WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Organic agriculture and mice December 9th, 2018 by

Some practices are harder to introduce to farmers than others. In Europe, environmental degradation caused by industrial agriculture has given rise to new forms of subsidies for farmers to provide specific environmental services, such as planting hedgerows or keeping wild flower strips around their fields. In developing countries, however, environmental subsidies are non-existent and hence curbing environmental degradation can be extra challenging.

Recent developments in the global quinoa trade have devastated the fragile ecosystem of the Bolivian Altiplano (see Jeff’s blog “Wind erosion”). As quinoa production intensified, farmers ploughed up large sections of native vegetation, which left the soil prone to wind erosion. With the thin fertile top soil being blown away and young quinoa plants being covered with sand, many farmers abandonned their land and moved to the cities. The loss of native vegetation also limited the forage available for the llamas and vicuñas.

To address this problem, the research organisation Proinpa is trying hard to re-introduce native plants. If native plants could be grown as live barriers around quinoa fields, they would provide fodder and at the same time reduce wind erosion. But some farmers are reluctant to adopt this technology. Planting live barriers costs money, labour and takes up part of their land.

Many of the farmers who plant barriers belong to associations that market organic quinoa. Organic certification ensures that farmers get higher prices, as long as they follow certain practices (such as planting hedges) that contribute to a better social and natural environment. Subsidies for organic farming are rare in developing countries, premiums from certification schemes can partly make up for missing government subsidies, unless pests also like organic crops.

Farmers who grow live barriers told Proinpa that the hedges attract mice who can destroy young quinoa seedlings. Mice are also attracted to the harvested grain as it dries in the field, before threshing. If the quinoa is not stored properly, mice often get into the warehouses. When droppings foul the grain, the crop is rejected for organic trade.

Organic agriculture can be a blessing to boost the income of smallholder farmers and to protect the environment. But as this example shows, organic farmers are prone to additional challenges. Farmers on the Bolivian Altiplano set traps by burying cans partly filled with water to drown the mice. Frustrated quinoa growers also stomp on mice burrows in thie fields or leave quinoa chaffe at the entrance of mice holes, so they eat this and leave the young quinoa untouched.

Every new technology has unintended consequences. Perhaps no one anticipated that live barriers would protect mice, and the soil. Yet farmers who have planted the barriers see their benefit and are willing to find new ways to take on the mice.

Watch and download videos

The video from Bolivia on live barriers against wind erosion will be published early next year on the Access Agriculture video platform .

The video on Grass strips against soil erosion made in Thailand and Vietnam is available in 10 languages, including English, Spanish, Ayamara and Quechua

The many farmer training videos on organic agriculture

Related blogs

Waiting for rats

Quinoa, lost and found

Acknowledgement

The video on live barriers in Bolivia is developed with funding from the McKnight Foundation’s Collaborative Crop Research Program (CCRP). Thanks to Milton Villca, Eliseo Mamani and colleagues at Proinpa for background on this story.

Golden urine September 16th, 2018 by

Cities are throwing away a fortune in urine, I learned the other day while visiting Dr. Noemi Stadler-Kaulich, a German agro-forester and long-time resident of Bolivia. The urine from an average person contains $85 dollars´ worth of phosphorous in one year, Noemi explained. Urine is rich in phosphorous, nitrogen and potassium, the main elements of fertilizer (chemical or organic). A metropolitan area like Cochabamba, with 1,200,000 people, flushes away over $100 million worth every year, Naomi explained, just in the phosphorous from urine, turning the valley’s main river, the Río Rocha, into an open sewer.

Noemi has dry latrines on her farm near the town of Vinto, on the edge of the Cochabamba metropolitan area. If you have never sat a dry latrine it can take some getting used to. There is a large hole for feces and a smaller one, up front, to collect the urine, which can be used right away as fertilizer. After defecating, one walks around to the back of the latrine and adds a handful of wood ash to the deposit, which is composted once the container is full. Dried, composted human feces are an excellent, dry fertilizer with little or no smell.

I used to have a nice dry latrine in Honduras. It used no water and made little odor. But dry latrines do take a little management. At the time I was worried about pathogens and had samples from dry latrines analyzed at a laboratory in Tegucigalpa. The samples were free of the most common parasites and pathogens. Dry latrines compost the night soil for at least six months, which helps to kill pathogens. Still, this demands some competent management.

At our home in Cochabamba, we began recycling urine about a year ago. Urine is easy to collect in a jar or bottle or while sitting on a chamber pot. You can mix urine with water or apply it straight to the soil, near plants. We put most of our urine on the compost pile, where the pee helps to speed up the decomposition of paper and dry plants. Urine in a compost heap has no smell at all; perhaps in part because the nitrogen in urine quickly breaks down into ammonia.

I have not yet been able to confirm Noemi’s estimate of the value of phosphorous in urine, not to mention the potassium and nitrogen, but urine is certainly worth something as fertilizer. Recycling urine also helps to save water. Conventional toilets waste up to six liters of precious water to flush 300 ml of urine.

As it is now, modern conventional agriculture applies nitrogen, phosphorous and potassium (NPK) to crops, and (at least some of) the nutrients become part of the living plants, which are eaten by people and later discarded as human waste. No doubt in the future clever people will find other clean, convenient ways to recycle this NPK, without wasting water. In the meantime, saving urine as fertilizer is a golden opportunity.

Related video

Human urine as fertilizer

Further reading

Andersson, E. (2015). Turning waste into value: using human urine to enrich soils for sustainable food production in Uganda. Journal of Cleaner Production, 96, 290-298.

As the waters recede July 1st, 2018 by

Peasant farmers can be quick to seize an opportunity, and when the benefit is clearly high, farmers may skip the experimental stage and go straight to a new practice on a massive scale.

In the lower Gangetic Delta in southwest Bangladesh, people live just centimeters above sea level. Getting rid of excess water can make all the different between harvest and hunger.

In the 1960s, earthen embankments were built around certain large areas of land.

The newly dry land inside these dykes is called a polder. Successful farming in the polder depends on having large draining canals, snaking through the muddy land, to carry water to the river.

In 2000, the 10 km-long Amodkhali Canal silted up. So during the winter rainy season the water had nowhere to go. A vast area in the middle of Polder 2 became a seasonal lake. Villagers hung on, growing rice in the dry season. Many migrated for wage labour in the winter.

Then in May 2017, Blue Gold (a program implemented by the government of Bangladesh) began to re-excavate the Amodkhali Canal.  By July they had dug out 8.4 km. It was a big job. At 2.5 meters deep and 6 meters wide, thousands of cubic meters of mud had to be moved. Some was done by machinery and some by hand. Groups of women were organised into Labour Contracting Societies (LCS) to earn money doing the work.

Local people near the canal saw the work. Even those living far away heard about it, and when the rains came in July 2017, farmers could see with their own eyes that the rainwater was draining away.

Like a river, a drainage canal has a sort of watershed, called a catchment area. This canal drains a roughly tear-drop shaped area some four by six kilometres: a big place. The thousands of farmers in the area didn’t have to be begged or cajoled into planting rice: they just did it.

My colleagues and I met local farmer Nozrul Islam near the banks of the canal. He said that he was so happy with the canal. He has two hectares of land and when the water drained off, nobody told him to plant rice. He simply went to Khulna, a neighbouring district, and bought rice seed for all of his land. He hadn’t planted winter rice for over 16 years.

Nozrul’s experience was replicated all over the area. In the village of Koikhali, a group of women told us that they also planted winter (amon) rice last year.

There was no experimentation, no hesitation. People simply re-introduced a winter rice crop into their cropping system, which they had not grown for almost a generation. The total catchment area is 4326 ha. That first year they planted 2106 hectares of winter rice, and harvested 12,000 tons or rice. Much of this rice was sold on the national market.

Related blog

Robbing land from the sea

Related video

Floating vegetable gardens

Acknowledgement

The Amodkhali Canal was re-excavated by the Blue Gold Program in Bangladesh, supported by the Blue Gold Program, with funding from the Embassy of the Netherlands. I am indebted to Joynal Abedin, Shahadat Hossain, Md. Harun-ar-Rashid, Guy Jones, A. Salahuddin and many others for teaching me about polders on a recent trip to Bangladesh.

Innovating in the homeland of lupins May 20th, 2018 by

Vea la versión en español a continuación

Rhimer Gonzales is an agronomist who has worked in Morochata, in the Bolivian Andes, for three years, introducing new, sweet varieties of lupin: the beans can be eaten directly without soaking them to remove the natural toxins. Rhimer has also been trying, without success, to encourage folks to grow lupins in rows, just like other crops.

Farmers have been growing lupins here for a long time. Wild lupins are common in the canyons of Morochata, an area close to the center of origin for this crop with the gorgeous flowers and edible beans. It seems unlikely that local farmers could learn new ways to grow lupins, yet the use of a farmer learning video has triggered innovations.

I accompanied Rhimer during a recent visit, when we met Serafina CĂłrdoba. She was busy washing dishes under a tree in front of her house, hurrying to finish so she get her kids started on their homework. She explained that the family got a DVD on soil conservation at a meeting of the sindicato (local village organization). Afterwards she watched the videos again with her husband and children. She remembered several of the videos, especially one on lupins and another on earthworms.

When we asked if the family had done anything new after watching the videos, at first she demurred. She wasn’t sure if the changes they had made in selecting lupin seed were important enough. Before, they would just take a handful of seeds and plant them. After seeing the video she picked out the big, healthy seeds, and the family planted those. The crop is flowering in the field now and doña Sefarina said it looks better than in previous years.

The family also noticed in the video that people planted in rows, in furrows made with oxen. So doña Serafina and her husband Jorge planted a whole field with oxen. She was pleased that this was a fast way to plant—clearly saving time is important for busy families. Rhimer confirmed that planting with oxen was a major innovation. Before, people planted just one row of lupins around the field.

The video emphasized seed selection. But it also showed row planting with oxen, because that is a routine practice in Anzaldo, where most of the video was filmed. Lupins are a more important crop in Anzaldo than in Morochata, even though both municipalities are in Cochabamba.

The value of filming farmers at work is that other farmers watching the video can learn all sorts of unexpected things. Conventional practice in one area can be an interesting innovation for another.

Rhimer explained that he selected the lupin video to show in Morochata because he thought it would be convincing. He was pleased to learn about doña Serafina’s experience, because the video succeeded in convincing her family to not only select seed, but also to plant in rows.

Each farmer responds to a video in his or her own way. Later we met don Darío, who had also seen the videos at the meeting at the sindicato, and had later watched the DVD again with his family. Then he planted a whole field of lupins in rows. Unlike doña Serafina, who said that planting in rows was easier, don Darío said it was more work. But that’s because he planted a whole field by hand with a pick, on a canyon side. Don Darío planted his lupins in straight lines up the hillside, and parallel to the slope as well, forming a grid pattern.

Rhimer explained that this lupin was a new, sweet variety and the plants were smaller than those of the bitter lupin that was previously planted in Morochata, so farmer had planted the new, shorter variety too far apart. Rhimer was also frustrated that the farmers were not watering the lupin enough. “Irrigating it one more time would have done it good.” There is plenty of water here. But folks are still not treating lupins like a major crop, worth irrigating.

Change takes time, even when a community has a good extensionist like Rhimer. I thought he was doing well, successfully encouraging people to plant a new variety, and with a little help from the lupin video, inducing people to select healthy seed and plant in lines. As farmers grow familiar with the new variety they might learn to plant it closer together and water it a bit more, especially if a market develops for it.

Rhimer was modest about his own contribution to changing farmer practices. I suggested that the farmers’ responses to the videos were closely related to his work in the community. But Rhimer said that even though he had shared ideas with people of Morochata for a long time, it was the video that finally convinced the farmers to try row planting and seed selection.

Rhimer’s hard earned standing with farmers meant they were receptive to new ideas. But the videos provided additional, concrete evidence that that the new practices actually worked.

Related blog stories

United women of Morochata

Crop with an attitude

Watch the video on lupins

Growing lupin without disease: Available in English, Spanish, Quechua, Aymara, and French

Acknowledgements

Our work in Bolivia is funded by the McKnight Foundation’s CCRP (Collaborative Crop Research Program). Rhimer Gonzales works for the Proinpa Foundation.

INNOVANDO EN LA CUNA DEL TARWI

Por Jeff Bentley, 20 de mayo del 2018

Rhimer Gonzales es un agrónomo que ha trabajado en Morochata, en los Andes bolivianos, durante tres años, introduciendo nuevas variedades dulces de tarwi (también conocido como lupino, chocho, y altramuz). Sus granos se pueden comer directamente sin remojarlos para eliminar las toxinas naturales. Rhimer también ha intentado, sin éxito, alentar a las personas a cultivar tarwi en hileras, al igual que otros cultivos.

Los agricultores han estado cultivando tarwi aquí durante mucho tiempo. Los tarwis silvestres son comunes en los cañones de Morochata, un área cercana al centro de origen de este cultivo, con hermosas flores y frijoles comestibles. Parece poco probable que se podría enseñar algo nuevo a agricultores con tanta experiencia con el tarwi, sin embargo, el uso de un video de aprendizaje ha desencadenado algunas innovaciones.

Acompañé a Rhimer durante una visita reciente, cuando conocimos a Serafina Córdoba. Estaba ocupada lavando los platos debajo de un árbol en frente de su casa, apurada a terminar para poder ayudar a sus hijos con sus tareas. Ella explicó que la familia recibió un DVD sobre la conservación del suelo en una reunión del sindicato (organización local del pueblo). Luego ella miró los videos nuevamente con su esposo e hijos. Ella recordó los videos, especialmente uno sobre tarwi y otro sobre lombrices.

Cuando le preguntamos si la familia había hecho algo nuevo después de ver los videos, al principio ella se negó. No estaba segura que los cambios que habían hecho en la selección de semillas de lupino eran lo suficientemente importantes. Antes, simplemente tomaban un puñado de semillas y las sembraban. Después de ver el video, ella seleccionó las semillas grandes y saludables, y la familia las sembró. Ahora el cultivo está en flor y doña Sefarina dice que se ve mejor que en años anteriores.

La familia también notó en el video que la gente sembraba en hileras, en surcos hechos con bueyes. Entonces doña Serafina y su esposo Jorge plantaron una parcela entera con bueyes. Estaba contenta de que era rápido sembrar así; para una familia ocupada es imprescindible ahorrar tiempo. Rhimer confirmó que sembrar con bueyes fue una gran innovación. Antes, la gente sembraba solo una fila de tarwis alrededor de la parcela.

El video enfatizó la selección de semilla. Pero también mostró la siembra en surcos con bueyes, porque esa es una práctica convencional en Anzaldo, donde se filmó la mayor parte del video. El tarwi es más importante en Anzaldo que en Morochata, aunque ambos municipios están en Cochabamba.

El valor de filmar a los agricultores mientras trabajan es que otros agricultores que miran el video pueden aprender todo tipo de cosas inesperadas. La práctica convencional en una zona puede ser una innovación interesante para otra.

Rhimer explicó que seleccionó el video de tarwi para mostrar en Morochata porque pensó que sería convincente. Le agradó conocer la experiencia de doña Serafina, porque el video logró convencer a su familia no solo de seleccionar semillas, sino también de plantar en filas.

Cada agricultor responde a un video a su manera. Más tarde nos encontramos con don Darío, quien también había visto los videos en la reunión en el sindicato, y luego había visto el DVD otra vez con su familia. Luego plantó una parcela entera de tarwi en fila. A diferencia de Doña Serafina, quien dijo que plantar en hileras era más fácil, don Darío dijo que era más trabajo. Pero eso es porque sembró un campo entero a mano con una picota, en ladera del cañón. Don Darío sembró su tarwi en línea recta hacia arriba, y de lado a lado, como cuadrícula.

Rhimer explicĂł que este tarwi era una variedad nueva y dulce y que las plantas eran más pequeñas que las del tarwi amargo que ya se conocĂ­a en Morochata, por lo que los agricultores habĂ­an sembrado la variedad nueva muy distanciada. Rhimer tambiĂ©n estaba frustrado porque los campesinos no estaban regando lo suficiente al lupino. “Regarlo una vez más lo hubiera hecho bien”. AquĂ­ hay mucha agua. Pero la gente todavĂ­a no está tratando al tarwi como un cultivo importante, que vale la pena regar.

El cambio lleva tiempo, incluso cuando una comunidad tiene un buen extensionista como Rhimer. Yo admiraba su trabajo, animando la gente a sembrar una nueva variedad y con un poco de ayuda del video de tarwi, induciendo a los agricultores a seleccionar semilla y sembrar en línea. A medida que los agricultores se familiarizan con la nueva variedad, podrían aprender a sembrarla más cerca y regarla un poco más, especialmente si se desarrolla un mercado para el tarwi.

Rhimer modestamente atribuía mucho del cambio en prácticas a los videos. Sugerí que el cambio estaba estrechamente relacionado con su trabajo en la comunidad. Pero Rhimer dijo que aunque había compartido ideas con la gente de Morochata durante mucho tiempo, fue el video que finalmente convenció a los agricultores a probar la siembra en líneas y la selección de semilla.

Por su trabajo constante, Rhimer ha ganado la confianza de los agricultores para que reciban a las nuevas ideas. Pero los videos dieron evidencia adicional y concreta de que las nuevas prácticas realmente funcionaran.

Historias previas del blog

Mujeres unidas de Morochata

Cultivo con carácter fuerte

Vea el video sobre tarwi

Producir tarwi sin enfermedad: Disponible en español, inglés, quechua, aymara, y francés

Agradecimiento

Nuestro trabajo en Bolivia es auspiciado por el CCRP (Programa Colaborativo para la InvestigaciĂłn de los Cultivos) de la FundaciĂłn McKnight. Rhimer Gonzales trabaja para la FundaciĂłn Proinpa.

Robbing land from the sea March 25th, 2018 by

The low-lying Netherlands is famous for its polders, the land behind the dikes, reclaimed from the sea. Beginning about 1000 AD, people made dikes, or earthen dams, to protect communities from flooding. At first the water was simply drained through canals, but with time the land in the polders subsided, and by the 1400s water was being pumped out with windmills. Thanks to hard work, investment and some clever engineering, people still live in and farm the polders.

Much of Bangladesh is also right at sea level and densely populated. So why doesn’t Bangladesh have polders too? I wondered out-loud during a recent visit last October.

“But we do! Bangladesh has many polders,” my colleague Salahuddin retorted. He explained that there was a string of some 123 polders over much of southern Bangladesh, an area where several large rivers cut the delta into finger-like strips of lowland.

The polders were built between the 1960s and the 1980s, first by the provincial government of East Pakistan, and later by the Government of Bangladesh, after independence from Pakistan in 1971.

Each polder is ringed by a low earthen embankment (basically a dike), sometimes just two meters high and made by hand. The roughly oval-shaped polders are dozens of kilometers in circumference.

The Bangladeshi polders are drained by an ingenious network of canals, radiating like veins from the center of the polder to the edge, where the flow of water is controlled by a sluice gate in the embankment.The sluice gate is a concrete structure with metal doors that can be raised by a hand-crank to let the water out during the rainy season, and lowered during the dry season to keep out the saltwater.

Originally the wetlands of the delta region had been sparsely populated by fisher-farmers who grew low yielding rice varieties that tolerated brackish water. The polders soon became attractive places to live and settlers trickled in. The people who were born in the polders tended to stay there and so populations increased.

Some of the polders have benefited from some sort of project, and have been reasonably well managed. By 2018 the better polders are like gardens, with comfortable farm houses surrounded by shimmering green rice fields.

The polders have had their share of troubles. Sometimes one of the rivers changes course, depositing a bank of silt next to the sluice gate, so the water inside the polder cannot drain out.  Other problems are man-made. Loggers float timber down the canals, and when the logs reach the sluice gates, the workers take the easy route to the river. Instead of hoisting the logs around the sluice gate, the loggers force the timber through the delicate metal gates, twisting and denting them so they no longer open and close. Wealthy, powerful people sometimes block the drainage canals to raise fish in them. Or they string nets over the canal to catch fish. But this slows down the flow of water, allowing silt to settle and eventually block the canal. The canals are as wide as a highway, and can be just as difficult to maintain. So once the drainage canal stops working, villagers are unable to open them up again without help from outsiders.

The polders are essentially a government mega-project, which sounds at first like a recipe for disaster. But as one drives along the top of a polder embankment, the muddy river on one side and the tidy green fields and villages on the other, it is hard to ignore the fact that the government got something right.

Ironically, country that is flooded during the rainy season may be completely dry a few months later. Various initiatives are now promoting dry-season irrigation for high value crops besides rice, and the farmers in the polders are avidly buying motorized pumps. In many places the rich, black earth inside the polders is now producing two or three crops a year of rice, mung beans, mustard, watermelon and vegetables.

Such changes in the farming system are creating more wealth for the farmers in those polders that are well run. But it will take collaboration, for local government to protect the canals and embankments, for the private sector to provide farm supplies and buy the produce and especially for innovative farmers, to continue re-inventing the agriculture of this marvelous, human-made environment.

Further reading

In characteristic modesty it was some time before my friend Salahuddin told me that he had written his masters’ thesis on the polders of Bangladesh.

Salahuddin, Ahmad 1995 Operation and Maintenance of Small Scale Flood Control Projects: Case of Bangladesh Water Development Board. Master’s Thesis: Institute ofSocial Studies, The Hague.

See also Paul’s blog from last week on coastal Bangladesh: Floating vegetable gardens.

Acknowledgement

I am indebted to Md. Harun-ar-Rashid, Guy Jones and many others for enlightening me about polders on a recent trip to Bangladesh, supported by the Blue Gold Program, with funding from the Embassy of the Netherlands. Thanks to Harun-ar-Rashid, Ahmad Salauddin, Paul Van Mele and Eric Boa for reading and remarking on previous versions.

Design by Olean webdesign