WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Wind erosion and the great quinoa disaster December 30th, 2018 by

vea la versión en español a continuación

Bolivian agronomist Gernaro Aroni first told me how quinoa was destroying the southwest Bolivian landscape some 10 years ago, when he came to Cochabamba for a writing class I was teaching. Ever since then I wanted to see for myself how a healthy and fashionable Andean grain was eating up the landscape in its native country.

I recently got my chance, when Paul and Marcella and I were making videos for Agro-Insight. Together with Milton Villca, an agronomist from Proinpa, we met Genaro in Uyuni, near the famous salt flats of Bolivia. Genaro, who is about to turn 70, but looks like he is 55, told us that he had worked with quinoa for 41 years, and had witnessed the dramatic change from mundane local staple to global health food. He began explaining what had happened.

When Genaro was a kid, growing up in the 1950s, the whole area around Uyuni, in the arid southern Altiplano, was covered in natural vegetation. People grew small plots of quinoa on the low hills, among native shrubs and other plants. Quinoa was just about the only crop that would survive the dry climate at some 3,600 meters above sea level. The llamas roamed the flat lands, growing fat on the native brush. In April the owners would pack the llamas with salt blocks cut from the Uyuni Salt Flats (the largest dry salt bed in the world) and take the herds to Cochabamba and other lower valleys, to barter salt for maize and other foods that can’t be grown on the high plains. The llama herders would trade for potatoes and chuño from other farmers, supplementing their diet of dried llama meat and quinoa grain.

Then in the early 1970s a Belgian project near Uyuni introduced tractors to farmers and began experimenting with quinoa planted in the sandy plains. About this same time, a large-scale farmer further north in Salinas also bought a tractor and began clearing scrub lands to plant quinoa.

More and more people started to grow quinoa. The crop thrived on the sandy plains, but as the native brushy vegetation grew scarce so the numbers of llamas began to decline.

Throughout the early 2000s the price of quinoa increased steadily. When it reached 2500 Bolivianos for 100 pounds ($8 per kilo) in 2013, many people who had land rights in this high rangeland (the children and grandchildren of elderly farmers) migrated back—or commuted—to the Uyuni area to grow quinoa. Genaro told us that each person would plow up to 10 hectares or so of the scrub land to plant the now valuable crop.

But by 2014 the quinoa price slipped and by 2015 it crashed to about 350 Bolivianos per hundredweight ($1 per kilo), as farmers in the USA and elsewhere began to grow quinoa themselves.

Many Bolivians gave up quinoa farming and went back to the cities. By then the land was so degraded it was difficult to see how it could recover. Still, Genaro is optimistic. He believes that quinoa can be grown sustainably if people grow less of it and use cover crops and crop rotation. That will take some research. Not much else besides quinoa can be farmed at this altitude, with only 150 mm (6 inches) of rain per year.

Milton Villca took us out to see some of the devastated farmland around Uyuni. It was worse than I ever imagined. On some abandoned fields, native vegetation was slowly coming back, but many of the plots that had been planted in quinoa looked like a moonscape, or like a white sand beach, minus the ocean.

Farmers would plow and furrow the land with tractors, only to have the fierce winds blow sand over the emerging quinoa plants, smothering them to death.

Milton took us to see one of the few remaining stands of native vegetation. Not coincidentally, this was near the hamlet of Lequepata where some people still herd llamas. Llama herding is still the best way of using this land without destroying it.

Milton showed us how to gather wild seed of the khiruta plant; each bush releases clouds of dust-like seeds, scattered and planted by the wind. Milton and Genaro are teaching villagers to collect these seeds and replant, and to establish windbreaks around their fields, in an effort to stem soil erosion. I’ve met many agronomists in my days, but few who I thought were doing such important work, struggling to save an entire landscape from destruction.

Acknowledgement

Genaro Aroni and Milton Villca work for the Proinpa Foundation. Their work is funded in part by the Consultative Crop Research Program of the McKnight Foundation.

Related blog stories

Organic agriculture and mice

Awakening the seeds

Scientific names

Khiruta is Parastrephia lepidophylla

DESTRUYENDO EL ALTIPLANO SUR CON QUINUA

Jeff Bentley, 30 de diciembre del 2018

El ingeniero agrónomo boliviano Gernaro Aroni me contó por primera vez cómo la quinua estaba destruyendo los suelos del suroeste boliviano hace unos 10 años, cuando vino a Cochabamba para una clase de redacción que yo enseñaba. Desde aquel entonces quise ver por mí mismo cómo el afán por un sano grano andino podría comer el paisaje de su país natal.

Recientemente tuve mi oportunidad, cuando Paul, Marcella y yo hacíamos videos para Agro-Insight. Junto con Milton Villca, un agrónomo de Proinpa, conocimos a Genaro en Uyuni, cerca de las famosas salinas de Bolivia. Genaro, que está a punto de cumplir 70 años, pero parece que tiene 55, nos dijo que había trabajado con la quinua durante 41 años, y que había sido testigo del cambio dramático de un alimento básico local y menospreciado a un renombrado alimento mundial. Empezó a explicar lo que había pasado.

Cuando Genaro era un niño en la década de 1950, toda el área alrededor de Uyuni, en el árido sur del Altiplano, estaba cubierta de vegetación natural. La gente cultivaba pequeñas parcelas de quinua en los cerros bajos, entre arbustos nativos (t’olas) y la paja brava. La quinua era casi el único cultivo que sobreviviría al clima seco a unos 3.600 metros sobre el nivel del mar. Las llamas deambulaban por las llanuras, engordándose en el matorral nativo. En abril los llameros empacaban los animales con bloques de sal cortados del Salar de Uyuni (el más grande del mundo) y los llevaban en tropas a Cochabamba y otros valles más bajos, para trocar sal por maíz y otros alimentos que no se pueden cultivar en las altas llanuras. Los llameros intercambiaban papas y chuño de otros agricultores, complementando su dieta con carne de llama seca y granos de quinua.

Luego, a principios de la década de 1970, un proyecto belga cerca de Uyuni introdujo tractores a los agricultores y comenzó a experimentar con quinua sembrada en las pampas arenosas. Por esa misma época, un agricultor a gran escala más al norte, en Salinas, también compró un tractor y comenzó a talar los matorrales para sembrar quinua.

Cada vez más gente empezó a cultivar quinua. El cultivo prosperó en las llanuras arenosas, pero a medida que la vegetación nativa de arbustos se hizo escasa, había cada vez menos llamas.

A lo largo de los primeros años de la década de 2000, el precio de la quinua aumentó constantemente. Cuando llegó a 2500 bolivianos por 100 libras ($8 por kilo) en 2013, muchas personas que tenían derechos sobre la tierra en esta pampa alta (los hijos y nietos de los agricultores viejos) retornaron a la zona de Uyuni para cultivar quinua. Genaro nos dijo que cada persona araba hasta 10 hectáreas de t’ola para plantar el ahora valioso cultivo.

Pero para el 2014 el precio de la quinua comenzĂł a bajar y para el 2015 se colapsĂł a cerca de 350 bolivianos por quintal ($1 por kilo), a medida que los agricultores en los Estados Unidos y en otros lugares comenzaron a cultivar quinua ellos mismos.

Muchos bolivianos dejaron de cultivar quinua y regresaron a las ciudades. Para entonces la tierra estaba tan degradada que era difícil ver cómo podría recuperarse. Sin embargo, Genaro es optimista. Él cree que la quinua puede ser cultivada de manera sostenible si la gente la cultiva menos y usa cultivos de cobertura y rotación de cultivos. Eso requerirá investigación. No se puede cultivar mucho más que además de la quinua a esta altitud, con sólo 150 mm de lluvia al año.

Milton Villca nos llevó a ver algunas de las parcelas devastadas alrededor de Uyuni. Fue peor de lo que jamás imaginé. En algunas parcelas abandonados, la vegetación nativa regresaba lentamente, pero muchas de las chacras que habían sido sembradas en quinua parecían la luna, o una playa de arena blanca, menos el mar.

Los agricultores araban y surcaban la tierra con tractores, sólo para que los fuertes vientos soplaran arena sobre las plantas emergentes de quinua, ahogándolas y matándolas.

Milton nos llevó a ver uno de los pocos manchones de vegetación nativa que queda. No por casualidad, esto estaba cerca de una pequeña comunidad de llameros, que queda en Lequepata. El pastoreo de llamas sigue siendo la mejor manera de usar esta tierra sin destruirla.

Milton nos mostró cómo recolectar semillas silvestres de la planta khiruta; cada arbusto libera nubes de semillas parecidas al polvo, dispersas y sembradas por el viento. Los Ings. Milton y Genaro están enseñando a los comuneros a recolectar estas semillas y replantar, y a establecer barreras contra el viento alrededor de sus campos, en un esfuerzo por detener la erosión del suelo. He conocido a muchos agrónomos a través de los años, pero pocos que en mi opinión hacían un trabajo tan importante en comunidades remotas, luchando para salvar un paisaje entero de la destrucción.

Agradecimiento

Genaro Aroni y Milton Villca trabajan para la FundaciĂłn Proinpa. Su trabajo es auspiciado en parte por el Programa Consultativo de InvestigaciĂłn de Cultivos de la FundaciĂłn McKnight.

Historias de blog relacionadas

Organic agriculture and mice

Despertando las semillas

Nombres cientĂ­ficos

Khiruta es Parastrephia lepidophylla

Organic agriculture and mice December 9th, 2018 by

Some practices are harder to introduce to farmers than others. In Europe, environmental degradation caused by industrial agriculture has given rise to new forms of subsidies for farmers to provide specific environmental services, such as planting hedgerows or keeping wild flower strips around their fields. In developing countries, however, environmental subsidies are non-existent and hence curbing environmental degradation can be extra challenging.

Recent developments in the global quinoa trade have devastated the fragile ecosystem of the Bolivian Altiplano. As quinoa production intensified, farmers ploughed up large sections of native vegetation, which left the soil prone to wind erosion. With the thin fertile top soil being blown away and young quinoa plants being covered with sand, many farmers abandonned their land and moved to the cities. The loss of native vegetation also limited the forage available for the llamas and vicuñas.

To address this problem, the research organisation Proinpa is trying hard to re-introduce native plants. If native plants could be grown as live barriers around quinoa fields, they would provide fodder and at the same time reduce wind erosion. But some farmers are reluctant to adopt this technology. Planting live barriers costs money, labour and takes up part of their land.

Many of the farmers who plant barriers belong to associations that market organic quinoa. Organic certification ensures that farmers get higher prices, as long as they follow certain practices (such as planting hedges) that contribute to a better social and natural environment. Subsidies for organic farming are rare in developing countries, premiums from certification schemes can partly make up for missing government subsidies, unless pests also like organic crops.

Farmers who grow live barriers told Proinpa that the hedges attract mice who can destroy young quinoa seedlings. Mice are also attracted to the harvested grain as it dries in the field, before threshing. If the quinoa is not stored properly, mice often get into the warehouses. When droppings foul the grain, the crop is rejected for organic trade.

Organic agriculture can be a blessing to boost the income of smallholder farmers and to protect the environment. But as this example shows, organic farmers are prone to additional challenges. Farmers on the Bolivian Altiplano set traps by burying cans partly filled with water to drown the mice. Frustrated quinoa growers also stomp on mice burrows in thie fields or leave quinoa chaffe at the entrance of mice holes, so they eat this and leave the young quinoa untouched.

Every new technology has unintended consequences. Perhaps no one anticipated that live barriers would protect mice, and the soil. Yet farmers who have planted the barriers see their benefit and are willing to find new ways to take on the mice.

Watch and download videos

The video from Bolivia on live barriers against wind erosion will be published early next year on the Access Agriculture video platform .

The video on Grass strips against soil erosion made in Thailand and Vietnam is available in 10 languages, including English, Spanish, Ayamara and Quechua

The many farmer training videos on organic agriculture

Related blogs

Waiting for rats

Quinoa, lost and found

Acknowledgement

The video on live barriers in Bolivia is developed with funding from the McKnight Foundation’s Collaborative Crop Research Program (CCRP). Thanks to Milton Villca, Eliseo Mamani and colleagues at Proinpa for background on this story.

A burning hunger June 24th, 2018 by

Towards the end of the dry season many families across the African savannas have exhausted their reserves of stored cereal crops. Vegetables are hard to come by in local markets. Bush meat is one way for rural people to supplement their meagre diet with protein during the well-named lean or hunger season. This is why development organisations have struggled for decades to curb the destructive practice of setting the bush on fire to hunt small wildlife.

One option to ensure some food and income during the lean season is to grow cashew and mango trees. But with increased labour costs and insecure markets, it is difficult for farmers to properly maintain their planted trees. Slashing the weedy and bushy undergrowth is often only done late during the flowering and fruiting season, by which time bush fires set by others may have spread into and destroyed entire plantations in no time.

Increasingly, development organisations are starting to realise that integrated farming systems and local value addition to food are the way forward. In a recently published video on the Access Agriculture video platform, the Beninese NGO DEDRAS neatly shows how growing groundnuts and soya beans in cashew plantations helps farmers produce a nutritious crop during the lean season, and thus discourage damaging bush fires. DEDRAS also made a training video with rural women on how to make cheese from soya, a good example of adding value.

In addition to tree crops, such as mango and cashew, farmer also manage other local species, such as nĂ©re (Parkia biglobosa) and the karitĂ© or shea nut tree (Vitellaria paradoxa). These wild indigenous trees, distincive features of the savanna, also provide fruits and nuts during the lean season. NerĂ© and the shea nut tree have grown here for thousands of years and are relatively fire-resistant. Traditionally, nĂ©rĂ© seeds are dried, cooked and fermented to make “soumbala”, a local equivalent to bouillon cubes that brings taste to many dishes. But with an increased need for fuel wood, more nĂ©rĂ© are being cut down. While the fuel wood crisis has not received the attention it deserves, nutritionists have taken notice and have come up with a way to use fermented soya beans as a replacement for the local soumbala. This practice has been captured by the NGO AMEDD in Mali in a nice farmer training video, also hosted on the Access Agriculture video platform.

In an earlier blog, Jeff wrote about his experience with grasscutters in West Africa. Declining populations in the wild, along with the strong and continuing demand for meat, have inspired rural entrepreneurs to develop alternative sources. Across Africa one can witness how mainly women and youth have set up grasscutter, poultry, rabbit and other small livestock businesses.

The many training videos on small livestock, intercropping with legumes, and rural food processing offer viable alternatives to the hunting for bush meat. These enterprises may eventually prove more effective in reducing bush fires than lecturing rural people about their adverse environmental impacts. Positive solutions are always better at promoting behaviour change.

Related blog

Coming in from the wild

Waiting for rats

Related farmer training videos

Growing annual crops in cashew orchards

Preparing cashew apple juice

Making a condiment from soya beans

Making soya cheese

Parkland agroforestry

Harvesting and storing shea nuts

Making better shea butter

Promoting weaver ants in your orchard

Feeding grasscutters

Robbing land from the sea March 25th, 2018 by

The low-lying Netherlands is famous for its polders, the land behind the dikes, reclaimed from the sea. Beginning about 1000 AD, people made dikes, or earthen dams, to protect communities from flooding. At first the water was simply drained through canals, but with time the land in the polders subsided, and by the 1400s water was being pumped out with windmills. Thanks to hard work, investment and some clever engineering, people still live in and farm the polders.

Much of Bangladesh is also right at sea level and densely populated. So why doesn’t Bangladesh have polders too? I wondered out-loud during a recent visit last October.

“But we do! Bangladesh has many polders,” my colleague Salahuddin retorted. He explained that there was a string of some 123 polders over much of southern Bangladesh, an area where several large rivers cut the delta into finger-like strips of lowland.

The polders were built between the 1960s and the 1980s, first by the provincial government of East Pakistan, and later by the Government of Bangladesh, after independence from Pakistan in 1971.

Each polder is ringed by a low earthen embankment (basically a dike), sometimes just two meters high and made by hand. The roughly oval-shaped polders are dozens of kilometers in circumference.

The Bangladeshi polders are drained by an ingenious network of canals, radiating like veins from the center of the polder to the edge, where the flow of water is controlled by a sluice gate in the embankment.The sluice gate is a concrete structure with metal doors that can be raised by a hand-crank to let the water out during the rainy season, and lowered during the dry season to keep out the saltwater.

Originally the wetlands of the delta region had been sparsely populated by fisher-farmers who grew low yielding rice varieties that tolerated brackish water. The polders soon became attractive places to live and settlers trickled in. The people who were born in the polders tended to stay there and so populations increased.

Some of the polders have benefited from some sort of project, and have been reasonably well managed. By 2018 the better polders are like gardens, with comfortable farm houses surrounded by shimmering green rice fields.

The polders have had their share of troubles. Sometimes one of the rivers changes course, depositing a bank of silt next to the sluice gate, so the water inside the polder cannot drain out.  Other problems are man-made. Loggers float timber down the canals, and when the logs reach the sluice gates, the workers take the easy route to the river. Instead of hoisting the logs around the sluice gate, the loggers force the timber through the delicate metal gates, twisting and denting them so they no longer open and close. Wealthy, powerful people sometimes block the drainage canals to raise fish in them. Or they string nets over the canal to catch fish. But this slows down the flow of water, allowing silt to settle and eventually block the canal. The canals are as wide as a highway, and can be just as difficult to maintain. So once the drainage canal stops working, villagers are unable to open them up again without help from outsiders.

The polders are essentially a government mega-project, which sounds at first like a recipe for disaster. But as one drives along the top of a polder embankment, the muddy river on one side and the tidy green fields and villages on the other, it is hard to ignore the fact that the government got something right.

Ironically, country that is flooded during the rainy season may be completely dry a few months later. Various initiatives are now promoting dry-season irrigation for high value crops besides rice, and the farmers in the polders are avidly buying motorized pumps. In many places the rich, black earth inside the polders is now producing two or three crops a year of rice, mung beans, mustard, watermelon and vegetables.

Such changes in the farming system are creating more wealth for the farmers in those polders that are well run. But it will take collaboration, for local government to protect the canals and embankments, for the private sector to provide farm supplies and buy the produce and especially for innovative farmers, to continue re-inventing the agriculture of this marvelous, human-made environment.

Further reading

In characteristic modesty it was some time before my friend Salahuddin told me that he had written his masters’ thesis on the polders of Bangladesh.

Salahuddin, Ahmad 1995 Operation and Maintenance of Small Scale Flood Control Projects: Case of Bangladesh Water Development Board. Master’s Thesis: Institute ofSocial Studies, The Hague.

See also Paul’s blog from last week on coastal Bangladesh: Floating vegetable gardens.

Acknowledgement

I am indebted to Md. Harun-ar-Rashid, Guy Jones and many others for enlightening me about polders on a recent trip to Bangladesh, supported by the Blue Gold Program, with funding from the Embassy of the Netherlands. Thanks to Harun-ar-Rashid, Ahmad Salauddin, Paul Van Mele and Eric Boa for reading and remarking on previous versions.

Floating vegetable gardens March 11th, 2018 by

For much of the year Bangladesh appears more water than land. It can also be a chaotic place. Yet such impressions are misleading, and something I wanted to counteract with a genuine admiration for how people make the best of often difficult circumstances. Colleagues commented on my positive outline when I wrote about innovations in rural extension, in a book published in 2005. More recently, I’ve been reminded about the resilience and creativity of farmers after watching a video on floating vegetable gardens, now available on the  Access Agriculture platform.

The video is nicely made, with strong visual shots and compelling interviews with farmers. The dreamy traditional music carries you along in the wake of a wooden boat steered by a Bangladeshi farmer on a shallow, temporarily flooded area.

It takes a lot of work to make a floating vegetable garden, but the video reveals an amazing abundance of crops tended by farmers. For years, Bangladeshi farmers have turned two major recurring problems into an opportunity. The land lost to floods during the annual monsoons is used to grow crops; and the world’s worst aquatic weed, the water hyacinth, is turned into compost.

Scientists have tried for decades to find ways to control this weed, including the release of weevils that feed on its leaves. Governments and local authorities have tried in vain to mechanically remove this weed using heavy machinery, creating mountains of water hyacinth on the banks of rivers and lakes that no one is quite sure what to do with.

In the video, farmers in Bangladesh show a sustainable alternative. Instead of laboriously removing the bulky mass of water hyacinth, the weeds are left in place. A long bamboo pole is placed on top of a thick matt of water hyacinth and with a hook the water hyacinth is pulled from both sides of the bamboo towards the bamboo pole and compressed to make a compact plant bed. After 10 days the compacted leaves and roots start to decompose and a new layer of water hyacinth is added. Floating beds are about two meters wide and vary in length; some are as long as 20 meters.

In the meantime, back home, women have started to grow vegetable seedlings in round compost balls. Once the plants are old enough the gardeners carry them on the boat to their floating garden beds, and insert the compost balls with seedlings in the plant bed. Farmers grow okra, various types of gourds, leafy vegetables, ginger and turmeric. The video also shows how some innovative farmers even connect two floating beds with trellises made of bamboo and jute rope to grow yard-long beans.

Farmers across developing countries, and Bangladesh in particular, have a wealth of knowledge. The many training videos hosted on the Access Agriculture platform pay tribute to these farmers and allow them to share their knowledge and experiences across borders. At Agro-Insight we celebrate these respectable farmers in our weekly blog stories. We hope you enjoy reading them as much as we enjoy writing them.

Watch the video

Floating vegetable gardens

Related blogs on farmers’ innovations

Ashes to aphids

No land, no water, no problem

Specializing in seedlings

Tomatoes good enough to eat

Further reading

Van Mele, P., Salahuddin, A. and Magor, N. (eds.) 2005. Innovations in Rural Extension: Case Studies from Bangladesh. CABI Publishing, UK, 307 pp. Download from: www.agroinsight.com/books

Acknowledgement

The Floating vegetable garden video has been made by the Christian Commission for Development in Bangladesh (CCDB), one of the partners trained by Access Agriculture to produce quality farmer training videos.

Design by Olean webdesign