WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

The intricacies of mulching September 9th, 2018 by

Everybody working in agriculture knows something about mulching, which can lead us to think that we know all about it. But mulching is a surprisingly complex topic, as I recently realised while following a video from start to finish. For example, different crops may require different types of mulch, and some mulches are better avoided under certain conditions. As with other farming techniques, to make a video on mulch, manuals are often inadequate; one needs to rely on the experience of farmers.

We started preparing for the video on mulch during a workshop in Pune, India, in February 2017, where Jeff and I had trained a number of local partners to write fact sheets and video scripts for farmers (read an account on this workshop in: Nourishing a fertile imagination). One of the scripts was on mulch. When I revisit the first draft of that script it is striking how generic our early ideas were.

Among other things, the script mentioned: “Mulch allows more earthworms and other living things to grow by providing shade. The earthworms make the soil fertile and dig small tunnels that allow the water to go more easily into the soil.” That is all well and good, but that first script was a little light on how to go about mulching, although it had an idea of using dry straw.

More than a year (and 10 versions of the script) later, cameraman Atul Pagar from Pune, India, finished his video “Mulch for a better soil and crop”. For the past two years, Atul has been steadily producing quality farmer-to-farmer training videos, such as on the use of herbal medicine in animal health. Each of the videos is a testimony of the richness of local knowledge and practices.

For instance, the final version of the video mentions that fruits and vegetables like cauliflower, watermelon and others that grow close to the ground are best mulched with dry straw and sugarcane trash or other crop residue in between every row.

Commonly available wheat husks are not suitable for such crops, as Ravindra Thokal, one of the farmers featuring in the video, explains. “After harvest, we used to burn the crop residue. Now we do not burn it, but I use it as mulch in my cauliflowers. I do not mulch with wheat husks because they are easily washed away by rain. And when blown away by the wind, the husks can settle on the cauliflowers, which may damage them.”

In less than 12 minutes, the nicely crafted video also explains what to consider when mulching fruit trees, how to fertilise your mulched crop with liquid organic fertiliser, how to control rats that may hide in mulch, and what the pitfalls are of using plastic mulch. None of these ideas were in the first draft of the video script. The script had been improved over the intervening months by discussing the ideas with farmers and other experts. Although I had read quite a bit about mulching, a lot of the information in the video was new to me.

Farming is intricate. To produce good training videos for farmers requires people who have a keen eye, an open mind and the patience to learn from farmers. Atul has all of these. You can find his videos on the Access Agriculture video platform.

Related blogs

We have written many blog stories on soil fertility management, such as:

Inspiration from Bangladesh to Bolivia

What do earthworms want?

Nurturing ideas, and seed

Chemical attitude adjustment

The bokashi factory

Smelling is believing

The big mucuna

Crop with an attitude

Related videos

Mulch for a better soil and crop

Making a vermicompost bed

The wonder of earthworms

Reviving soils with mucuna

Predicting the weather August 5th, 2018 by

Vea la versión en español a continuación.

Most city dwellers are only interested in short term weather forecasting. Will it rain over the weekend when we plan to invite friends to a barbecue? Do I need to carry an umbrella or wear a coat tomorrow? Fortunately for urbanites, TV, radio and web-based services provide short term forecasts.

Farmers are interested in short term weather forecasting too, but also in long term predictions. Knowing what week the rains will start is crucial for deciding when to plant rain-fed crops. Knowing how much it will rain helps farmers choose whether to plant on high or low ground.

I learned this recently from Edwin Yucra, a researcher at UMSA, the public university of San Andrés, in La Paz. Edwin has spent years working with Andean farmers on the Bolivian Altiplano, helping them to make use of weather forecasts based on the latest scientific data. For example, not long ago, Edwin noticed that there was an unexpected rain forecast for two or three days hence. Farmers usually like rain, but not on this occasion. The farmers he works with were about to freeze-dry potatoes into chuño, when dry nights are essential. To warn the farmers, Edwin didn’t have to meet with them. He let them know on social media. The farmers were able to delay making chuño and save their potatoes from rotting.

Scientific weather forecasting is not particularly accurate over a whole year. This leaves farmers more or less to their own devices. One group of master Andean farmers, called the “yapuchiris” (which means “farmer” in Aymara) is paying attention to long term weather forecasting. During the dry season, the yapuchiris notice the behavior of animals, plants or stars. For example, birds nesting on high ground are interpreted as a sign of a wet year, while low-lying nests suggest a coming drought.

The yapuchiris write down their meteorological predictions, and then painstakingly record the weather every day for the next year, to see if their forecasts are accurate. The yapuchiris use a paper form which they and their partners at PROSUCO (an NGO) have been perfecting since the early 2000s. They use a large chart called a Pachagrama. They coined this term by blending the Aymara word for earth and weather (“pacha”) with the Spanish ending “-grama” (as in telegrama). The “Earth-gram” includes 365 columns for each day of the year and rows for different kinds of weather (sun, wind, rain, hail etc.) The yapuchiris draw a dot in each row every day to add further information. For example a dot placed higher in the sun column means a sunny day and a lower dot is a cloudy day. Later the dots can be connected to draw a graph of the year’s weather.

PROSUCO is now doing a statistical study to show how well a dedicated group of 18 yapuchiris have accurately predicted weather for several years. The university tracks modern meteorology sites for short-term forecasting, while the Pachagrama validates local, long-term weather predictions. These two efforts are different, but farmers value both of them, and will use them to see what the weather will be like this week, and this year.

Read more about the yapuchiris:

Farmers produce electronic content

Inspiration from Bangladesh to Bolivia

Or about chuño:

Feeding the ancient Andean state

Acknowledgement

This work with weather is funded by the McKnight Foundation’s Collaborative Crop Research Program (CCRP).

Photos courtesy of PROSUCO.

PREDICIENDO EL CLIMA

Por Jeff Bentley

5 de agosto del 2018

La mayoría de los citadinos solo estamos interesados en el pronóstico del tiempo a corto plazo. ¿Lloverá durante el fin de semana cuando pensamos invitar nuestros amigos a una parrillada? ¿Debo llevar un paraguas o un abrigo mañana? Afortunadamente para los citadinos, los servicios meteorológicos de la televisión, la radio y web hacen tales pronósticos a corto plazo.

Los agricultores también están interesados en pronósticos meteorológicos a corto plazo, además de predicciones a largo plazo. Saber qué semana comenzarán las lluvias es crucial para decidir cuándo sembrar cultivos de secano. Saber cuánto va a llover ayuda a los agricultores a elegir sembrar en terreno alto o bajo.

Esto lo aprendí recientemente de Edwin Yucra, investigador de UMSA, la Universidad Mayor de San Andrés, en La Paz. Durante años, Edwin ha trabajado con agricultores en el Altiplano boliviano, ayudándolos a hacer pronósticos meteorológicos, incluso con métodos científicos. Por ejemplo, no hace mucho tiempo, Edwin notó que había un pronóstico de lluvia inesperada para dos o tres días. A los agricultores generalmente les gusta la lluvia, pero no esta vez. Estaban a punto de congelar las papas en chuño, cuando las noches secas son esenciales. Para advertir a los agricultores, Edwin no tenía que reunirse con ellos. Él les hizo saber en las redes sociales para que pudieran esperar para hacer chuño y evitar que sus papas se pudran.

El pronóstico meteorológico científico no es muy preciso para predicciones de un año entero, lo cual deja a los agricultores más o menos a sus propios recursos. Por otro lado, un grupo de agricultores andinos, los llamados yapuchiris (que significa “agricultor” o “agricultora en aymara), pone atención a la predicción del tiempo a largo plazo. Durante la época seca, los yapuchiris se fijan en el comportamiento de los animales, plantas o las estrellas. Por ejemplo, las aves que anidan en un terreno más elevado que el normal se interpretan como señal de un año lluvioso, mientras que los nidos más bajos sugieren que habrá sequía.

Los yapuchiris escriben sus predicciones meteorolĂłgicas y luego registran minuciosamente el comportamiento del tiempo todos los dĂ­as durante el prĂłximo año, para ver si sus pronĂłsticos eran ciertos. Los yapuchiris usan un formulario en papel que ellos y sus socios en PROSUCO (una ONG) han estado perfeccionando desde principios de la dĂ©cada de 2000. Usan una tabla grande llamada Pachagrama. Ellos acuñaron este tĂ©rmino combinando la palabra aymara para la tierra y tiempo (“pacha”) con la terminaciĂłn “-grama”. Ese Pachagrama incluye 365 columnas para cada dĂ­a del año y filas para los diferentes tipos de clima (sol, viento, lluvia, granizo, etc.). Los yapuchiris dibujan un punto en cada fila todos los dĂ­as para anotar la informaciĂłn. Por ejemplo, un punto colocado más arriba en la columna del sol significa un dĂ­a soleado y un punto más abajo es un dĂ­a nublado. Más tarde, los puntos se pueden conectar para dibujar un gráfico del clima del año.

Prosuco ahora está haciendo un estudio estadístico para ver si un grupo de 18 yapuchiris diestros ha predicho con precisión el clima durante varios años. La universidad rastrea los sitios modernos de meteorología para el pronóstico a corto plazo, mientras que el Pachagrama valida las predicciones meteorológicas a largo plazo en base a observaciones ecológicas. Estos dos esfuerzos son diferentes, pero los agricultores valoran ambos y los usarán para ver cómo será el clima esta semana y este año.

Lea más acerca de los yapuchiris:

Agricultores producen contenido electrĂłnico

InspiraciĂłn de Bangladesh a Bolivia

O sobre el chuño:

Feeding the ancient Andean state

Agradecimiento

Este trabajo con el clima es financiado por el Programa Colaborativo de InvestigaciĂłn sobre Cultivos (CCRP) de la FundaciĂłn McKnight.

Las fotos son cortesĂ­a de PROSUCO.

From Uniformity to Diversity March 18th, 2018 by

Industrial agriculture has so damaged our farmland that the survival of future generations is at risk, reveals Professor Emile Frison in his report “From Uniformity to Diversity”, but there is a way forward.

Frison’s conclusions are staggering. The indiscriminate use of synthetic fertilisers has destroyed the soil biota and its nutrient-recycling potential. The combination of monocultures with highly mechanized farming and fertiliser abuse has caused historical land degradation on over 20% of the Earth’s agricultural land.

High yielding varieties and abundant chemical inputs increased global crop yields in the early decades of the “green revolution”, but by now the sobering figures indicate that productivity in 24% to 39% of the areas growing maize, rice, wheat and soya bean has stagnated or collapsed.

The productivity of industrial agriculture has systematically degraded the environment on which it relies. The use of pesticides in agriculture has caused a global decline in insect pollinators, threatening the very basis of agriculture. Some 35% of global cultivated crops depend on pollination by insects.

Pests, diseases and weeds are adapting to chemical pest management faster than ever. Genetically modified soya bean and maize that are herbicide-tolerant have led to an indiscriminate use of glyphosate-based herbicides such as Roundup and 2,4D. Some 210 species of weeds have now evolved resistance to herbicides. Clearly, this flawed, industrial model has mainly benefitted corporate interests and the wealthiest farmers.

Of equally great concern to our future generations, industrial agriculture significantly reduces the agrobiodiversity of livestock and crops. Underutilized or minor crops such as indigenous leafy vegetables, small-grained African cereals, legumes, wild fruits and tree crops are disappearing in the face of competition with a limited number of industrially produced varieties of rice, maize and wheat.

Greenhouse gases, water pollution, over-exploited aquifers, soil erosion, loss of agrobiodiversity and epidemics such as the Avian influenza and the foot-and-mouth disease are all signs that we need to urgently re-think the way we produce, source and consume food.

A study covering 55 crops grown on five continents over 40 years found that organic agriculture was significantly more profitable (22–35%) than conventional agriculture.

In developed countries, yields of organic agriculture were 8% lower than conventional agriculture, but they were 80% higher in developing countries where the negative impacts of industrial agriculture on food and nutrition security are felt much stronger.

So, diversified systems have shown the capacity to raise productivity in places where additional food is desperately needed.

Yet corporate lobby groups, some donors and development agencies continue to push governments towards unsustainable production models. In many developing countries, the general switch towards specialized, export-oriented systems has eroded the diverse farming economy, causing a gradual loss of local food distribution systems.

With rapid shifts in global and regional competitiveness this has destabilised national food supply, not only jeopardising the very livelihoods on which rural people depend, but also putting the economic and political stability of developing countries at risk.

Ethical labels, such as Fairtrade, ensure that farmers in developing countries get more money for their produce, while at the same time ensuring social and environmental services are ploughed back into the rural communities, as explained by Nicolas Lambert, CEO of Fairtrade Belgium.

Emile Frison, and other outstanding scientists like Professor Olivier De Schutter, former UN special rapporteur on the right to food, have joined forces in the International Panel of Experts on Sustainable Food Systems. There is indeed an urgent need to alert policy makers to the high risks related to short-term thinking and concentration of power in the hands of fewer, large-scale retailers and corporate agri-businesses.

It is re-assuring that eminent people have joined forces to protect global biodiversity and farmers’ rights to seed as key requirements for food systems that respect the farmers and their environment. The opponents are powerful, and motivated by greed, so the struggle is bound to be a long one.

Further reading

IPES-Food. 2016. From uniformity to diversity: a paradigm shift from industrial agriculture to diversified agroecological systems. International Panel of Experts on Sustainable Food systems. www.ipes-food.org

Related videos

Farmers’ rights to seed – Guatemala

Farmers’ rights to seed – Malawi

Succeed with seeds

Around 100 farmer training videos on organic agriculture can be found on the Access Agriculture video-sharing platform:  Organic agriculture

Photo Credit: Soya beans are harvested in Brazil. Paulo Fridman/Corbis

Floating vegetable gardens March 11th, 2018 by

For much of the year Bangladesh appears more water than land. It can also be a chaotic place. Yet such impressions are misleading, and something I wanted to counteract with a genuine admiration for how people make the best of often difficult circumstances. Colleagues commented on my positive outline when I wrote about innovations in rural extension, in a book published in 2005. More recently, I’ve been reminded about the resilience and creativity of farmers after watching a video on floating vegetable gardens, now available on the  Access Agriculture platform.

The video is nicely made, with strong visual shots and compelling interviews with farmers. The dreamy traditional music carries you along in the wake of a wooden boat steered by a Bangladeshi farmer on a shallow, temporarily flooded area.

It takes a lot of work to make a floating vegetable garden, but the video reveals an amazing abundance of crops tended by farmers. For years, Bangladeshi farmers have turned two major recurring problems into an opportunity. The land lost to floods during the annual monsoons is used to grow crops; and the world’s worst aquatic weed, the water hyacinth, is turned into compost.

Scientists have tried for decades to find ways to control this weed, including the release of weevils that feed on its leaves. Governments and local authorities have tried in vain to mechanically remove this weed using heavy machinery, creating mountains of water hyacinth on the banks of rivers and lakes that no one is quite sure what to do with.

In the video, farmers in Bangladesh show a sustainable alternative. Instead of laboriously removing the bulky mass of water hyacinth, the weeds are left in place. A long bamboo pole is placed on top of a thick matt of water hyacinth and with a hook the water hyacinth is pulled from both sides of the bamboo towards the bamboo pole and compressed to make a compact plant bed. After 10 days the compacted leaves and roots start to decompose and a new layer of water hyacinth is added. Floating beds are about two meters wide and vary in length; some are as long as 20 meters.

In the meantime, back home, women have started to grow vegetable seedlings in round compost balls. Once the plants are old enough the gardeners carry them on the boat to their floating garden beds, and insert the compost balls with seedlings in the plant bed. Farmers grow okra, various types of gourds, leafy vegetables, ginger and turmeric. The video also shows how some innovative farmers even connect two floating beds with trellises made of bamboo and jute rope to grow yard-long beans.

Farmers across developing countries, and Bangladesh in particular, have a wealth of knowledge. The many training videos hosted on the Access Agriculture platform pay tribute to these farmers and allow them to share their knowledge and experiences across borders. At Agro-Insight we celebrate these respectable farmers in our weekly blog stories. We hope you enjoy reading them as much as we enjoy writing them.

Watch the video

Floating vegetable gardens

Related blogs on farmers’ innovations

Ashes to aphids

No land, no water, no problem

Specializing in seedlings

Tomatoes good enough to eat

Further reading

Van Mele, P., Salahuddin, A. and Magor, N. (eds.) 2005. Innovations in Rural Extension: Case Studies from Bangladesh. CABI Publishing, UK, 307 pp. Download from: www.agroinsight.com/books

Acknowledgement

The Floating vegetable garden video has been made by the Christian Commission for Development in Bangladesh (CCDB), one of the partners trained by Access Agriculture to produce quality farmer training videos.

To fence or not to fence February 25th, 2018 by

Fences reveal a lot about rural communities. They show  how farmers make good use of available materials, but they can also uncover social tensions. Reading fences and understanding what they do and represent tells you a lot about how people work and live.

In the country-side of Kenya, farmers have a long tradition of fencing their farm with wooden poles. While this practice stems from a time where trees were abundant, competition with fuel wood is gradually changing this practice towards more inclusion of living plants.

In some parts of East Africa, fences contain the so-called pencil plant (Euphorbia tirucalli), grown in Europe as an ornamental. The aim is to discourage potential intruders, particularly those trying to steal livestock.  The fragile branches of pencil plants break easily, releasing a white sap that can blind people when the juice gets into their eyes.

In Egypt, farmers protect their maize from grazing animals by surrounding the field with a row of nightshade (from the same plant genus as potato and tomato). As with Euphorbia, the nightshade’s leaves contain a toxic juice. Farmers can restrain their own animals from grazing afar, but can’t be sure their neighbours do the same. And once cattle get into your maize field, the damage can be huge. A small investment in fences prevents disputes with your neighbours about who pays for the losses.

But fences often do more than keep animals out. Stone walls in Guatemala often contain sisal plants. Without reducing the land available for grazing animals, the space taken up by the fence is used to grow this valuable plant that provides farmers with fibre to make ropes. By diversifying crop, livestock and plant species on farm, farmers ensure a steady supply of what they need to live from their land.

At the highlands of southwest Uganda, a local farmer, James Kabareebe, showed us how he plants Calliandra around his fields, an agroforestry practice widely promoted by projects in the 1990s. Prunings of this leguminous tree are used as mulch to enrich his soil with nitrogen. And above all, it provides the necessary organic matter to soils on sloping land that are highly vulnerable to erosion caused by tropical downpours.

At times, living fences also point to a level of social injustice. Customary land rights benefit male community members, while women are often left to struggle to grow food on smaller plots or on less fertile soils.

In parts of Mali, women have negotiated with their men to grow a high value crop along the border of the field. The juicy, red flower heads of the roselle or bissap plant (Hibiscus sabdariffa), which is native to West Africa, provide a good source of additional revenue for rural women.

Fences across the world give us insights into how people manage their land. They are like a signature, revealing a little about how people relate to the land, and to each other.

 

Further reading

Tripp, A.M. 2004. Women’s Movements, Customary Law, and Land Rights in Africa: the case of Uganda. African Studies Quarterly. http://www.africa.ufl.edu/asq/v7/v7i4a1.htm

Related blogs

Mending fences, making friends

Design by Olean webdesign