WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Chemical attitude adjustment February 26th, 2017 by

Kannappan, C. Sekar, his wife, Bharathidasan, BagyarajAgricultural extension can work deep changes in farmers’ attitudes. Ironically, the extensionists themselves often think that a change in heart is difficult to achieve, so it was good to meet some inspired farmers last week in Tamil Nadu, India, while teaching a course with Paul Van Mele to agricultural researchers and extension agents.

We wrote four fact sheets with advice for farmers and we wanted to show the papers to real farmers, as a kind of peer review. One of the participants, Mrs. P. Tamilselvi, took us to the village of Seethapappi, where she works as an extensionist. The course participants, mostly agricultural researchers, formed small groups and found farmers to talk to.

We approached a farmhouse, where entomologist K. Bharathidasan called out, asking if anyone was home. When a surprised couple emerged, Bharathidasan introduced himself and soon had the farmers reading a fact sheet in Tamil on groundnut stem rot.

After Mr. C. Sekar read the fact sheet he talked about an organic agricultural concoction he used as a fertilizer and insecticide. He called it pancha kaviya, alluding to five ingredients it contained. Bharathidasan wrote down the recipe:

Mix 1) cow dung, 2) cow urine, 3) ghee, milk and curd, 4) coconut water and 5) jiggery (a candy) or sugarcane juice. Mix the ingredients thoroughly. Keep for 45 days. Filter the liquid directly into a sprayer and spray the crop.

This was only the first of many natural agro-chemicals farmers in this village described to us. Sekar also makes an organic pesticide with eight types of local plants. He adds them to cow urine and keeps them for 20 days. Then he filters the liquid and sprays it on his crops.

When Mrs. Sekar read the fact sheet she mentioned another organic pesticide. Two more farmers had their own recipe for a home brew to spray on plants.

Bagyaraj and farmer Prakash Kanna CROPPEDFarmer Prakash Kanna showed us a batch of pancha kaviya he’d made, a dull brown mix in a plastic drum. It had a strong, sour smell. He put it in irrigation water to fertilize his plants. He called it a growth regulator. (The pancha kaviya adds nutrients and beneficial flora and fauna to the soil).

The farmers said they also used marigold extract and gypsum powder to control various diseases in groundnuts (peanuts). And they enhance the soil with a beneficial bacterium, Pseudomonas, mixed with aged cow dung which helps the bacteria multiply and suppress fungi that cause disease.

That’s quite a lot of innovation.

Bharathidasan later told me that the farmers really liked the fact sheets, except for the references to chemicals. That wasn’t surprising given the many non-chemical options the villagers were using.

Later that week we visited another village, Panayaburam, slightly larger than Seethapappi, with a small cooperative office where the farmers met.

Here we quickly learned of a different set of attitudes. The farmers did mention neem oil and using a net to keep small insect pests out of vegetables, but many said that “here we only use chemicals.” One went so far as to say that if you used a mix made from cow dung on your plants, the other farmers would say that you were insane.

Anthropologists have long known that each village is unique; conclusions drawn in one village may not apply to neighboring ones. Even so, such a big difference in attitudes to chemicals was surprising. Seethapappi farmers said that they liked everything in the fact sheets, except for the chemicals. In Panayaburam farmers only wanted to know about pesticides to manage pests and diseases.

There is one major difference between these two villages. Organic-leaning Seethapappi has a KVK (farm science center), where farmers receive training and get advice. Extension agents in that KVK have generated a lot of excitement about making inputs from local materials. Panayaburam does not have a KVK, and farmers rely on the biased advice of agro-chemical dealers to keep plants healthy.

A KVK is a permanent structure, with a building and staff, working with farmers over the years. Extensionists may become frustrated with the pace of change because farmers seldom adopt a new technique instantly. Smallholders have to try out innovations on their own. Extension agents can and do make a difference in farmers’ attitudes about agrochemicals, even if it takes time.

Share on FacebookTweet about this on Twitter

Crop with an attitude January 29th, 2017 by

A plant has a personality and, like people and countries, some have stronger characters than others. Take the lupin bean (Lupinus mutabilis), for example. It is an oddly erect legume that forms a sort of cone shape, and its glorious flowers make the plant wildly popular with gardeners in many countries. In Bolivia it is called “tarwi”, from Quechua, the language of the Incas.

tarwi in bloomWhile making a video in Bolivia, my colleagues and I asked doña Eleuteria in the village of Phinkina to tell us what she planted after harvesting tarwi. She surprised me by saying that sometimes she followed tarwi with potatoes. That’s astounding, because potatoes are such a demanding crop that Andean farmers often rest the soil for years before planting a field to potatoes. Otherwise the soil may be improved by adding tons of chicken manure. Bolivian farmers in the Andes don’t buy manure for other crops, just the fussy and valuable potato.

I followed up by asking Reynaldo Herbas, from the village of Tijraska, if he had ever planted potatoes right after tarwi. “Yes, and it does very well. Planting tarwi is like fallowing your soil, or like using chicken manure,” he explained.

Tarwi seeds are also rich in oils and proteins and doña Eleuteria regularly feeds lupin beans to her children. Like some other Bolivians doña Eleuteria make a nutritious snack by boiling the seeds, but it’s a lot of work. The grains need to be soaked in water for three days before boiling, then left in the running water of the river for several days to wash out the bitter alkaloids.

Agronomist Juan Vallejos from Proinpa (a research institute) confirmed that tarwi takes a lot of water to process. This is ironic, because tarwi is recommended for dry areas with impoverished soils. Sweet varieties without the bitter alkaloids do exist, but in Bolivia the search for these sweet lupins is only just starting.

sorting tarwi or lupine seedWhile visiting doña Eleuteria to learn about processing seed, she showed us how to pick out the bad grains of tarwi, to ensure that the crop planted from them would be healthy. (The main disease is anthracnose, caused by the fungus Colletotrichum gloeosporioides). We asked doña Eleuteria what she did with the diseased grains. We thought that she might say that she buried them to keep the disease from spreading. But no, she buries the discarded grains because raw lupin beans are toxic, whether they are healthy or diseased.

“I do bury them,” she explained, “because they are so bitter that if the chickens eat them they will die.”

Agronomist Vallejos explained that tarwi plants are so packed with alkaloids that sheep and cattle will not touch a crop growing in the field. However, the lupin plant is drought resistant and even withstands hail, which often mows down other food crops in the Andes. Local governments in Bolivia are starting to promote tarwi as a way of adapting to climate change.

A plant may have a complex personality, with sterling qualities as well as some tragic defects. Tarwi or lupin is in many ways a perfect crop: well-suited to the punishing climate of the High Andes while nutritious for people and good for the soil. The downside is that you need lots of water to process the beans and to leach out the poisons that can kill your unsuspecting chickens.

Acknowledgements

For this story in Cochabamba, Bolivia, I was fortunate enough to be accompanied by Paul Van Mele and Marcella Vrolijks of Agro-Insight and Juan Vallejos and Maura Lazarte and others from Proinpa. The visit was funded by the McKnight Foundation.

Further reading

Calisaya, J.J.,  M. Lazarte, R. Oros, P. Mamani 2016 “Desarrollo Participativo de Innovaciones Tecnológicas para Incrementar la Productividad de los Suelos Agrícolas en Regiones Andinas Deprimidas de Bolivia.” Read at the Community of Practice meeting, McKnight Foundation, Ibarra, Ecuador 11-16 July. See the paper here.

Further viewing

The farmer training video Growing lupine without disease can be viewed and downloaded on the Access Agriculture video-sharing platform in English, French, Spanish, and shortly also in Quechua and Aymara.

CULTIVO CON CARÁCTER FUERTE

Por Jeff Bentley

29 de enero del 2017

Una planta tiene una personalidad, y como la gente y los países, algunos tienen más carácter que otros. Considere el lupino (Lupinus mutabilis), por ejemplo. Es una leguminosa que crece casi en forma de cono, y gracias a sus flores gloriosas la planta es querida por jardineros en muchos países. En Bolivia se llama “tarwi”, del quechua, el idioma de los Incas.

Mientas mis colegas y yo filmábamos un video en Bolivia, pedimos que doña Eleuteria en la comunidad de Phinquina nos contara qué sembraba después de cosechar el tarwi. Ella nos sorprendió cuando dijo que a veces sembraba papa después del tarwi. Es increíble, porque las papas son tan exigentes que muchos agricultores andinos descansan el suelo durante años antes de sembrar papas. Si no, el suelo tendrá que mejorarse agregando toneladas de gallinaza. Los agricultores en los Andes bolivianos no compran gallinaza para otros cultivos, solo la mimada y valiosa papa.

Luego le pregunté a Reynaldo Herbas de la comunidad de Tijraska, si él jamás había sembrado papas después del tarwi. “Sí, y produce muy bien. El sembrar tarwi es como descansar sus suelo, o como usar gallinaza,” explicó.

Marcella films Eleuteria soaking tarwiLos granos de tarwi son ricos en aceites y proteínas y doña Eleuteria a menudo los da de comer a sus hijos. Igual que algunas otras bolivianas, doña Eleuteria hace una merienda nutritiva con los granos cocidos, pero cuesta mucho trabajo. Los granos tienen que remojarse en agua durante tres días antes de cocerse, para después dejarlos en el chorro del río durante varios días más para expulsar los amargos alcaloides.

El Ing. Agrónomo Juan Vallejos de Proinpa (un instituto de investigación) confirmó que el tarwi toma mucha agua para procesarse. Es irónico, porque el tarwi se recomienda para zonas secas con suelos empobrecidos. Existen variedades dulces, sin los alcaloides amargos, pero en Bolivia recién empieza la búsqueda por esos lupinos dulces.

Cuando visitamos a doña Eleuteria para aprender cómo ella procesa la semilla, nos mostró cómo quitar los granos malos de tarwi, para asegurarse que el cultivo que siembra será sano. (La enfermedad principal es la antracnosis, causada por el hongo Colletotrichum gloeosporioides). Preguntamos a doña Eleuteria qué hacía con los granos enfermos. Pensábamos que diría que los enterraba para que las enfermedades no se diseminaran. Pero no, ella entierra a los granos descartados porque los granos crudos de tarwi son tóxicos, bien sea sanos o enfermos.

Eleuteria Sanchez burries bad lupine seed as chicken will die if they eat it“Los entierro,” explicó, “porque son tan amargos que si las gallinas se los comen podrían morirse.”

El Ing. Vallejos explicó que las plantas de tarwi están tan cargadas de alcaloides que las ovejas y vacas no tocan al cultivo en la parcela. Sin embargo, la planta de tarwi es resistente a la sequía y hasta aguanta a la granizada, que a menudo arrasa con otros cultivos en los Andes. Los gobiernos locales en Bolivia empiezan a promover el tarwi como una adaptación al cambio climático.

Una planta puede tener una personalidad compleja, con cualidades de oro igual que algunos defectos trágicos. El tarwi o lupino en muchas maneras en el cultivo perfecto: bien adaptado a los desafíos del clima altoandino, mientras es nutritivo para la gente y bueno para el suelo. Su lado oscuro es que requiere de mucha agua para lavar los venenos que pueden matar a tus gallinas inocentes.

Agradecimientos

Para escribir este cuento en Cochabamba, Bolivia, tuve la buena suerte de estar acompañado de Paul Van Mele y Marcella Vrolijks de Agro-Insight y Juan Vallejos y Maura Lazarte y otros de Proinpa. La visita se financió por la McKnight Foundation.

Para leer más

Calisaya, J.J.,  M. Lazarte, R. Oros, P. Mamani 2016 “Desarrollo Participativo de Innovaciones Tecnológicas para Incrementar la Productividad de los Suelos Agrícolas en Regiones Andinas Deprimidas de Bolivia.” Trabajo presentado en la reunión de la Comunidad de Práctica, McKnight Foundation, Ibarra, Ecuador 11-16 de julio. Ver la presentación aquí.

Para ver más

El video educativo para agricultores Producir tarwi sin enfermedad está disponible para ver y bajar en inglés, francés, español, y pronto también en quechua y aymara, en la plataforma Access Agriculture que se dedica a compartir videos.

Share on FacebookTweet about this on Twitter

Deeper nitrogen, more rice, a cooler planet December 25th, 2016 by

About 10% of greenhouse emissions are from agriculture, especially from wet rice cultivation. Rice plants need a lot of nitrogen which is often provided as urea, a chemical fertilizer which is usually broadcast by hand into the irrigation water: this is easy, but wasteful. Some 60% of the nitrogen fertilizer is lost as it is transformed into gases and enters the atmosphere. Some nitrogen is washed away by irrigation water. A practical alternative known as “urea deep placement” makes much better use of nitrogen.

usgUrea usually comes in round grains, the size of fine gravel. For deep placement, the small grains are pressed into larger, oval pellets, about the size of your thumbnail. The farmer pushes these “super granules” of urea into the soft soil, between four rice plants. This deep placement puts the urea underground, near the plants’ roots, so less nitrogen escapes into the air and water. The rice crop yields more and the farmers save money because they only need to use half as much fertilizer.

usg-bricketing-machineThe efficiency of urea deep placement was demonstrated by 1980. The practice has not been adopted more widely because of the lack of supply of the super granules, the additional labor required and the difficulty of correctly placing the super granules in the field.  But by the early 2000s, urea deep placement re-emerged in parts of Asia. The manufacture of small briquetting machines meant that the super granules could be made at the village level, and has led to a dramatic increase in their use, e.g. in Bangladesh (Giller et al. 2004).

urea-usg-granule-plantingThere are two types of innovations: some you can try alone and others need to be adopted by a network. A solitary person can plant a new crop variety, for example, but it takes many people to start using super granules.  A manufacturer has to build the briquetting machines. A second manufacturer has to buy a briquetting machine, make the super granules and sell them. Extensionists have to teach farmers how to place the super granules in the rice field. Then the farmers have to use the super granules, and make the idea their own.

It is kind of a chicken and egg problem. Farmers can’t use the super granules until someone makes them. Nobody will make them if there are no customers.

urea-granule-plantingA step in the right direction is to show farmers the value of the super granules. The IFDC (International Fertilizer Development Center) commissioned Agro-Insight to make a farmer learning video on how to use urea deep placement. The video was filmed in West Africa, but the concepts also apply to Asia or even Latin America.

Of the 80 million hectares of irrigated rice worldwide, two million are in Latin America and the Caribbean, where 800,000 smallholders make their livings growing rice: 59% of which is irrigated (i.e. appropriate for urea super granules). And the region has the most potential of any to expand irrigated rice production. Rice is a popular food; tropical Latin Americans eat an average of 37 kilos of milled rice every ear, equivalent to a generous portion of 1.3 cups of cooked rice per day. As incomes increase, Latin Americans eat (and import) more rice.

As Latin America and the Caribbean grow more rice, it will help to make better use of nitrogen. So the urea deep placement video was recently translated to Spanish (there was already a Portuguese version). The video is a start, as it can teach farmers and extensionists about the importance of using fertilizer more efficiently, so that farmers can start to demand super granules and encourage companies to make and stock them. Even without super granules, growers of any crop will harvest more and save money if they grasp the idea that urea goes further if it is buried in the soil. This innovation makes a small contribution towards solving the problem of global warming.

Further viewing

You can watch the urea deep placement video in English here, in Spanish here, and in nearly 30 other languages here.

Related blog

Take a stab

Further reading

Bent, Elizabeth 2015 The ground exhales: reducing agriculture’s greenhouse gas emissions http://theconversation.com/the-ground-exhales-reducing-agricultures-greenhouse-gas-emissions-40795

Giller, Ken E., Phil Chalk, Achim Dobermann, Larry Hammond, Patrick Heffer, Jagdish K. Ladha, Phibion Nyamudeza, Luc Maene, Henry Ssali, and John Freney 2004 “Emerging Technologies to Increase the Efficiency of Use of Fertilizer Nitrogen,” pp. 35-51. In Arvin R. Mosier, J. Keith syers and John r. Freney (Eds.) Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer Use in Food Production and the Environment. Washington: Island Press.

Pulver, Eduard 2010 “Manejo Estratégico y Producción Competetiva del Arroz bajo Riego en América Latina,” pp. 350-362. In Víctor Degiovanni B., César P. Martínez R., & Francisco Motta O. Producción Eco-Eficiente del Arroz en América Latina. Volume 1. Cali, Colombia: CIAT. http://ciat-library.ciat.cgiar.org/Articulos_Ciat/2010_Degiovanni-Produccion_eco-eficiente_del_arroz.pdf

Ricepedia http://ricepedia.org

Savant, N. K. and P. J. Stangel 1990 “Deep Placement of Urea Supergranules in Transplanted Rice: Principles and Practices.” Nutrient Cycling in Agroecosystems 25(1):1-83

 

 

Share on FacebookTweet about this on Twitter

New crops for Mr. Mpinda September 18th, 2016 by

A good video, one that lets farmers tell about their innovations, can spark the viewers’ imagination. A video can even convince smallholders to try a new crop.

mpinda-wateringLester Mpinda is an enterprising farmer in Mwanza, Malawi. Mpinda has a vegetable garden, known as a dimba, which is irrigated with water from a hand-dug well. A dimba is hard work, but worth it.

Mpinda grows vegetables, and sells them in the market in Mwanza. In 2013, he was able to use his earnings to buy a small, gasoline-powered pump to water his beans, onions and tomatoes. A $100 pump is a major investment for a Malawian smallholder, but also a great way to save time and avoid the backbreaking labor of carrying water from the well to the plants during the long, hot dry season.

mpinda-marches-up-to-get-the-hoseWith the money earned from his productive dimba, Mpinda bought a small stand, where his wife sells vegetables in the village.

In June 2015, Ronald Kondwani Udedi left some DVDs with videos at a government telecentre managed by Mathews Kabira, near Mwanza, Malawi. The DVDs had learning videos for farmers about growing rice and chilli peppers and managing striga, the parasitic weed.

handful-of-chilliesMathews took one set of DVDs to Mpinda, because he was “a successful farmer. Mpinda had a DVD player, but no TV, so he watched the videos on chilli growing at a neighbor’s house, using the neighbors TV and Mpinda’s DVD player. He watched the videos as often as the neighbor would let him. The more he watched, the more he learned.

Mpinda soon recognized the possibilities of chilli as a crop, even though he had never grown it.

To start a new crop you need more than a bright idea; you need seed. Getting chilli seed took some imagination. Mpinda went to the market and bought 20 small fresh chillies for 100 Kwacha (14 cents) and then dried them, like tomatoes, and planted the little seeds in a nursery, just like he had seen in the video. Mpinda had already been used to making seedbeds for onions and some of his other vegetables. At 21 days he transplanted the chilli seedlings, as he had seen on the videos.

lester-chizumeni-mpinda-in-gardenNow Mpinda has several dozen plants of chillies, a perennial variety which is eaten fresh in Malawi. People cut up the fiery chilli at table, to add some zest to meals.

Every few days Mpinda harvests three or four kilos of chillies and takes them to the market and sells them for 1000 kwacha a kilo ($1.40).

Mpinda has already planned his next step. After harvesting his little patch of eggplant, he is going to clear the land and plant a whole garden of chilli.

Mpinda has also watched the DVD of rice videos, and although no one in the area grows rice, he realizes that the crop would do well in the slightly higher space, just above his rows of vegetables. He has already looked for rice seed: there is none to be found in Mwanza and the agro-dealers won’t or can’t order it for him, so he is going to travel to the city of Zomba, 135 km away, and buy rice seed there. Mpinda has already identified the major rice varieties grown in Malawi and decided that one of them, Apasa, is the best for highland areas like his.

He is going to plant rice in October, possibly becoming the first rice farmer in Mwanza district.

Mpinda didn’t watch the rice and chilli videos as part of a farmer group. He didn’t have an extensionist to answer questions. He simply had the videos which he could (and did) watch several times to study the content. And this information alone was enough to inspire him to experiment with two crops that were entirely new to him.

Further viewing

You can watch the chilli videos in English here: http://www.accessagriculture.org/search/chilli/all/

And in Chichewa here: http://www.accessagriculture.org/search/chilli/ny/

You can watch the rice videos in English here: http://www.accessagriculture.org/search/rice/en/

And in Chichewa here: http://www.accessagriculture.org/search/rice/ny/

These videos and others are also available in other languages at www.accessagriculture.org

Share on FacebookTweet about this on Twitter

When stakes are at stake December 7th, 2014 by

Fred, the driver, keeps on changing gears as we wind our way up and down the hills of southwestern Uganda. The landscape is stunning and when we reach Kisoro just before sunset I realize we are just 10 kilometers from the border with DR Congo and Rwanda. The last orange light gives our eyes a last treat, a view of one of the majestic volcanoes with its head in the clouds. We are now nearly 2000 meters above sea level and the weather is cool. The rich volcanic soils have made this part of the country a major bean and potato growing area, supplying not only the people in the capital city, Kampala, but also in the neighbouring countries.

With land having become a scarce commodity, it is frightening to see how even the steepest slopes are under cultivation. And farmers have shifted en masse from growing bush beans to growing climbing beans. Five kilogram of bush bean seed gives farmers a harvest of about 100 kilograms, but the same amount of climbing bean seed easily yields 250 kilograms. The abundant leaves of climbing beans and the nitrogen they fix also helps to keep the soil fertile. No wonder that farmers have welcomed with open arms the climbing beans that CIAT and NARO introduced. (In 1984, the first improved climbing bean varieties from CIAT were officially released and promoted in Rwanda and then gradually into neighbouring countries).

But unlike bush beans, the climbing beans require stakes, which in a highly deforested part of the country are hard to come by and expensive. And as necessity is the mother of invention, it came as no surprise that farmers have developed a range of solutions.

Some farmers started planting eucalyptus trees on the tops of the hills. Others keep native trees such as Vernonia in their garden and regularly cut 2 or 3 meter-long branches from them, to use themselves or sell to their neighbours. The most popular local tree also provides fodder and medicine, among other things. As we visit various women’s groups to prepare for a series of farmer-to-farmer training videos, Felisten Nwemkuye from the Nyarrubuye women’s grain producers’ group in Kisoro tells us that they can keep their sticks for up to four years:

“After we harvest the beans, we bundle the stakes and turn them upside down so that the parts that were in the soil face upwards and can dry in the sun and get hard again. We also put them upright on some higher ground on some rocks so that when it rains the water easily runs off and the wood does not rot.”

“As stakes are so expensive won’t other people steal them if you leave them in the field?” asks Isaac Mugaga from NARO. He has been working with growers of climbing beans for over a decade.

“No, everyone in the community respects each other and in case stakes are stolen the thief is caught and brought to the local court. He will then be forced to repay the stakes,” replies Felisten.

People are sent to court for stealing stakes and for cutting branches of trees without permission. That is how serious people take their stakes.

The next day we visit the dynamic women’s group of Rwaramba. Here farmers rotate their bean with maize. But instead of harvesting the entire maize plant, they just harvest the cobs and leave the maize stalks standing. When farmers plant their climbing beans the following season, these stalks serve as stakes. As we continue visiting other villages, we learn that some farmers grow elephant grass on the terraced steep slopes of the mountains. They feed its leaves to their cattle, and keep the strongest stalks for staking.

Managing natural resources is an art and farmers, once more, have impressed me with their creativity.

NARO is the National Agricultural Research Organisation of Uganda. CIAT is the International Center for Tropical Agriculture.

Watch the upcoming video made with CIAT on Staking climbing beans.

Share on FacebookTweet about this on Twitter

Design by Olean webdesign