WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Stored crops of the Inka August 11th, 2019 by

Much of what ancient people leave behind is related to farming, as I was reminded on a recent trip to Inka Llajta, the largest Inka site in Bolivia, in Pocona, Cochabamba.

Little is known for sure about Inka Llajta, except that it was built on the far, southeast border of the Inka Empire, which they called Tawantinsuyu. The Inka were often at war, expanding into the territory of their neighbors, so it’s possible that the 30-hectare settlement was built as a garrison. Inka Llajta is built on the bottom of a steep cliff, on a bluff above the river. The spot would have been fairly easy to defend, while a waterfall on the site provided essential water.

Fortunately, the site has recently been cleared of much of its vegetation and it is now easier to see. Although I have been to Inka Llajta several times, thanks to the recent brush removal I was now able to see that ringing the front of the site is a row of storage pits.

Until a generation ago, potatoes were planted mostly in the rainy season. Now there is more irrigation and potatoes can be planted somewhere in Bolivia year-round. But until twenty or thirty years ago, some potatoes were stored in underground pits, where the tubers could be kept for six months or more.

I pointed out the row of pits to our guide, doña Berta, who is from one of the local communities. The pits were not on the tour. They had no sign to label and explain them. Humble agricultural features are easy to ignore.

“These were phinas,†I suggested, using the Quechua word I had learned for potato storage pits.

Doña Berta said that in Pocona, such pits are called “k’ayus,†but she immediately recognized them. “We used to make pits, put straw on the bottom, fill them with potatoes and cover them with earth,†she said, confirming that the pits were for potato storage. She added that the pits can also hold other roots and tubers, such as oca.

Inka Llajta is a grand site. It has one building that was 70 meters long, one of the largest roofed structures in the ancient Americas. But Tawantinsuyu lived by farming, and if we look close enough, we can still see where they kept their potato harvest, just a few steps from the fortified buildings, overlooking the valley below. 

When I first visited Inka Llajta 20 years ago it appeared much the way that the Inka had left it. Since then, the site has acquired a parking lot, a visitor’s center, and now you have to hire a guide (like the good-natured Berta, or one of her 16 colleagues, all from the local area). Inka Llajta is now full of signs offering information, including speculation about the site’s past.

One large block of rooms is labelled as an administrative area, while another was supposedly a “specialist’s area†where astronomers, agricultural specialists and builders gathered to organize their calendar based on the weather and the stars. The signs refer to another building as an aqllawasi, where girls of Tawantinsuyu were trained in weaving and brewing chicha, an alcoholic maize drink. In fact, these rooms could have been used for anything, and everything.

A natural boulder in the center of the large plaza is described as an “altarâ€, based on tales told by the hacienda workers to Erland Nordenskiöld, the Swedish ethnographer, in 1913.

A small tower near the edge of Inka Llajta has a view up the river, where a sentinel might have looked out for approaching enemies. But a sign says the tower was an astronomic observatory that the Inka used to gaze at the stars and decide when to plant. No explanation tells why being two meters closer to the heavens provides a better view for a stargazer.

As we have seen in earlier blogs, contemporary Andean peoples do look at the stars, but they also observe foxes, lizards, wild plants, cactus, clouds, mountains and use many other indicators to predict the year’s weather. A tower would have been of limited use.

Archaeologists use ethnographic analogies to interpret the past. The function of a structure or an artifact may be understood by comparing it to a similar item used by recent people. For example, it is reasonable to interpret the pits at Inka Llajta as places to store tubers, because rural people living near the site still kept potatoes and oca in similar holes until recently.

When archaeological sites are interpreted for the public, speculation can do more harm than good, fixing ideas in peoples’ minds that are hard to shift when new evidence emerges. As surely as an army marches on its stomach, in past civilizations agriculture made the world go around. Ancient peoples no doubt worshipped their gods and pondered the stars, but they also went about the mundane business of feeding themselves, and at archaeological sites you can still get a glimpse of how they produced and stored their food, if you keep your eyes open.

Further reading

Jesús Lara popularized Inka Llajta in newspaper stories after his 1927 visit. Lara’s description of the site is admirably free of speculation; he debunks the idea that the boulder on the site was an altar. His book can still be read with profit.

Lara, Jesús 1988 Inkallajta—Inkaraqay. Cochabamba: Los Amigos del Libro. 109 pp.

Previous blog stories

Forgetting Inca technology

Let nature guide you

Reading the mole hills

Death of the third flowers

Betting on the weather

Scientific name

Oca is a native Andean tuber crop, Oxalis tuberosa

The diesel wheat mills May 5th, 2019 by

The people of Yuraj Molino (“white millâ€) live surrounded by wheat fields, in a large valley near the small town of Pocona, Bolivia. As the name suggests, there have been flour mills in Yuraj Molino for some time. But by the late 1970s, customers were complaining of how long it took to grind the wheat; they got tired of waiting all day for their flour. And then millers began to notice that with the warmer, dryer climate, the streams no longer carried as much stream water, to power the mills. Some of the mills closed. Ana and I visited the ruins of a miller’s house, the yard full of weeds, with the mill still there and a calendar for 1984 still on the wall.

Other mills survived. Local miller Juan Torrico showed us his old mill house, with the canal that once brought water from the mountains. In 2001, Juan’s brother Sergio designed a new mill at the mill house. He bought two large, new stones from a master craftsman near Epizana, Cochabamba, who still carves the massive limestone wheels. Sergio bought a diesel engine, and a used truck axel. The brothers built a new mill house and mounted the stones in it, fixed the axel upright below them, and then used a steel rod to connect the axel to the diesel engine, which Sergio put in the next room. This way they kept the diesel smoke and the engine noise out of the mill room. They don’t want the smoke to spoil the delicate flavor of the flour, which people love.

Five or six other mills in the valley are also sited where old water mills used to be, near running water. But most of them are also now powered by diesel motors.

One by one the old water mills around Pocona adapted to diesel, and one or two are still using water power. The change to diesel was gradual and there was never a break in service, never a time when the farmers had no mills to go to. The mills themselves also stayed in the same places. Although the mills were originally sited to be near water, they were also near the wheat fields, and the millers owned the land where their mills were, and they had community ties to the area. So, the diesel mills stayed right where the water mills had been.

There is no research institution providing expertise on how to motorize Bolivian water mills. At some point, the millers themselves had to blend their traditional knowledge with a lot of new information about motors and old truck parts. As always, people in rural areas are constantly creating and making sophisticated adaptations to changing conditions.

Feeding the Inca Empire November 11th, 2018 by

Vea la versión en español a continuación

The Inca Empire depended on a road system, called the Qhapaq Ñan, that linked its four regions from Ecuador to Chile, moving armies, laborers and food. Like beads on a necklace, the Qhapaq Ñan was studded with grain silos, called qollqas, where food could be stored.

The largest set of these qollqas is at Cotapachi, near Cochabamba in Bolivia, 1000 km from the ancient Inca capital of Cusco, Peru. Between 1450 AD and 1500 AD, the Inca Empire built 2500 granaries at Cotapachi, on a dry ridge overlooking a small lake in the Cochabamba Valley. According to David Pereira, archaeologist and expert on the qollqas, this site was part of a vast complex, with about 1500 more qollqas on other, nearby hilltops.

Each qollqa is about 2.5 meters in diameter at its stone base and could hold perhaps 4 tons of maize. They were originally about 3 meters tall, with gently tapered cylindrical walls woven from the stems of the ch’illka plant and plastered with mud and roofed with straw of the needle grass.

In 2007, 27 of the qollqas of Cotapachi were reconstructed, so to speak. They were designed by the architect Jorge Obando Stemberg and built by soldiers from the nearby Tumusla Regiment of the Bolivian Army.  These replicas are made from adobe (mud) bricks, but they are kind of graceful in the afternoon sunlight, with the backdrop of the mountains.

Nothing is left of the other silos, except for rows and rows of stone bases.

From Cusco, the Inca could command the granary silos to be filled with maize grown in the green, irrigated fields of Cochabamba. The grain was carried to the garrison that guarded the southeast frontier at Inka Llajta, or it was sent to Cusco via the administrative settlement of Paria, in Oruro, Bolivia. A royal army passing through Cochabamba could provision its soldiers directly with the grain stored in the silos.

The grain was transported on llamas, which thrive on native Andean vegetation, but their slender backs can only carry a light pack of some 25 kg. You would need 160 llamas to haul the grain from one silo. It must have been a marvelous sight when thousands of pack llamas flowed like a river, up the stone slope to Inka Raqay, their first stop on the way to Cusco.

Like the Inka, all ancient states were built on the food and labor wrested from farmers. Some of the arrangements for commandeering and transporting that grain were as impressive as the cities they fed. The bases of grain silos may be humbler than ruined palaces, but it’s important to recognize that civilization is based on agriculture, and that farming does leave its mark on the archaeological record.

Notes

Thanks to David Pereira for sharing his insights about the Inca grain silos at Cotapachi.

The “-s†ending from Spanish is used today for Quechua plurals. In classical Quechua the qollqas would have been called “qollqakunaâ€.

The Inca, or Inka, was the supreme ruler of a state that was called “Tawantinsuyu,†meaning “all four quartersâ€.

There were actually more qollqas in the Mantaro Valley, in Peru, than in the Cochabamba Valley, but the silos in Mantaro were spread out over several sites.

Needle grass includes Stipa ichu and related species. It is called paja brava in Spanish, and ichhu in Quechua.

Ch’illka is Baccharis salicifolia.

Further reading

Eeckhout, Peter 2012 “Inca Storage and Accounting Facilities at Pachacamac.” Andean Past 10(1):12.

Gyarmati, János and Carola Condarco Castellón. Circa 2012 “Las ocupaciones prehispánicas tardías y el centro administrativo inkaico en la Cuenca de Paria, Altiplano de Oruro.”

Earlier blog stories

Inka Raqay, up to the underworld

Making new ruins

The tyrant of the Andes

Related videos

The grain kept at Cotapachi may have been stored for a while, or sent soon after harvest to Cusco. Weevils, moulds and other post-harvest problems have always been a challenge, and still are. For videos on handling the maize harvest on a small farm see:

Managing aflatoxins in maize during drying and storage

Managing aflatoxins in maize before and during harvest

Storing and managing maize in a warehouse

Good storing and conserving maize grain

Good shelling, sorting and drying of maize

Harvesting maize in a good way

ALIMENTANDO AL IMPERIO INCAICO

El Imperio Incaico dependía de un sistema de caminos, llamado el Qhapaq Ñan, que unía sus cuatro regiones desde Ecuador hasta Chile, moviendo ejércitos, trabajadores y alimentos. Como cuentas en un collar, el Qhapaq Ñan estaba tachonado de silos de grano, llamados qollqas, donde se podían almacenar los alimentos.

El conjunto más grande de estas qollqas está en Cotapachi, cerca de Cochabamba en Bolivia, a 1000 km de la antigua capital incaica de Cusco, Perú. Entre 1450 y 1500 AD, el Imperio Incaico construyó 2.500 graneros en Cotapachi, en una cresta seca con vista a un pequeño lago en el Valle de Cochabamba. Según David Pereira, arqueólogo y experto en las qollqas, este sitio formaba parte de un vasto complejo, con cerca de 1500 qollqas más en las otras cimas cercanas.

Cada qollqa medía unos 2,5 metros de diámetro en su base de piedra y podría almacenar unas 4 toneladas de maíz. Originalmente tenían unos 3 metros de altura, con paredes cilíndricas suavemente cónicas tejidas a partir de los tallos de la planta ch’illka y estucados con barro y techadas con paja brava.

En el 2007, 27 de los qollqas de Cotapachi fueron reconstruidos. Fueron diseñados por el arquitecto Jorge Obando Stemberg y construidos por soldados del cercano Regimiento de Tumusla del Ejército Boliviano.  Estas réplicas están hechas de adobes, pero son elegantes a la luz de la tarde, con el fondo de la cordillera.

No queda nada de los otros silos, excepto filas y filas de bases de piedra.

Desde Cusco, los incas podían ordenar que los silos se llenaran de maíz cultivado en los verdes campos irrigados de Cochabamba. El grano fue llevado a la guarnición que vigilaba la frontera sureste en Inka Llajta, o fue enviado a Cusco a través del asentamiento administrativo de Paria, en Oruro, Bolivia. Un ejército real que pasaba por Cochabamba podía abastecer directamente a sus soldados con el grano almacenado en los silos.

El grano fue transportado en llamas, que prosperan en la vegetación nativa andina, pero sus esbeltos lomos sólo pueden llevar una mochila ligera de unos 25 kg. Se necesitarían 160 llamas para llevar el grano de un silo. Habrá sido una vista todo un espectáculo ver a los miles de llamas cuando fluyeron como un río, por la ladera de piedra hasta Inka Raqay, su primera parada en el camino a Cusco.

Al igual que el Inka, todos los estados antiguos fueron construidos sobre los alimentos y la mano de obra arrebatada a los agricultores. Algunos de los arreglos para requisar y transportar ese grano eran tan impresionantes como las ciudades a las que alimentaban. Las bases de los silos de granos pueden ser más humildes que los palacios en ruinas, pero es importante reconocer que la civilización se basa en la agricultura, y que la agricultura deja su huella en el registro arqueológico.

Notes

Gracias David Pereira por compartir sus ideas sobre las qollqas de Cotapachi.

El sufijo “-s†del español se usa hoy en día para plurales en quechua. En el quechua clásico las qollqas se habrán llamado “qollqakunaâ€.

El Inca, o Inka, era el gobernante supremo de un estado que se llamaba “Tawantinsuyu”, que significa “los cuatro cuartos”.

Hay más qollqas en el Valle de Mantaro, en el Perú, que en el Valle de Cochabamba Valley, pero los silos en Mantaro estaban dispersos en varios sitios.

La paja brava incluye Stipa ichu y especies relacionadas. Se llama ichhu en quechua y needle grass en inglés.

Ch’illka es Baccharis salicifolia.

Lectura

Eeckhout, Peter 2012 “Inca Storage and Accounting Facilities at Pachacamac.” Andean Past 10(1):12.

Gyarmati, János y Carola Condarco Castellón. Circa 2012 “Las ocupaciones prehispánicas tardías y el centro administrativo inkaico en la Cuenca de Paria, Altiplano de Oruro.”

Earlier blog stories

Inka Raqay, up to the underworld

Making new ruins

The tyrant of the Andes

Related videos

El grano guardado en Cotapachi pudo haber sido almacenado por un tiempo, o enviado a Cusco poco después de la cosecha. Los gorgojos, mohos y otros problemas de pos-cosecha siempre han sido un desafío, y lo siguen siendo. Para ver videos sobre el manejo de la cosecha de maíz en una pequeña granja, vea:

Manejo de aflatoxinas en maíz durante el secado y almacenamiento

Manejo de aflatoxinas en el maíz antes y durante la cosecha

Almacenar y manejar el maíz en bodega

Almacenando bien el maíz

Desgranando, seleccionando y secando bien el maíz

Cosechando el maíz bien

Feeding the ancient Andean state June 17th, 2018 by

Early states from Mesopotamia to Mesoamerica still inspire awe with their fine art and architecture. Yet the artists and soldiers who built the states needed to be fed; whatever their other accomplishments, early states were always based on agriculture. In a recent book, James Scott reminds us that early states usually collected their taxes as grain, staple crops grown on a large scale, such as maize, rice, and wheat, which are easy to store. Scott observes that there were no ancient states based on potatoes or other tuber crops. Yet he admits that the Inka were a partial exception. The Inka did have maize, but they depended largely on the potato which is bulky and perishable, making it difficult to collect and store.

This set me thinking. Inspired by Professor Scott’s excellent book, I’d like to explain how tuber crops, and the potato in particular, sustained the Inka state and provided taxes.

First, the Inka state (called Tawantinsuyu) was not an early state, but had co-opted the myths and king lists of a much earlier one, Tiwanaku, which managed an empire that straddled the Andes from the Pacific Coast to the warm valleys of the Amazon Basin. Tiwanaku began as a village (about 1580 BC), but was a state by 133 AD and an empire by 724, lasting until 1187 when it collapsed in a civil war and broke up into smaller chieftainships (señoríos) that were independent until they were later conquered by the Inka.

The capital city of Tiwanaku was built near Lake Titicaca, on the high plains of Bolivia, not far from the border of modern-day Peru. It once housed 100,000 residents and was centered on large stone buildings made of sandstone and andesite, a hard rock quarried in Peru and ferried across Lake Titicaca on ships woven from the reeds that grew in the shallow waters. Tiwanaku was created long before the first Inka, Pachacuti, organized Tawantinsuyu in Cusco starting in 1438. So the Inka’s Tawantinsuyu was a late state, patterned on the much earlier and long-lasting Empire of Tiwanaku.

But in the pre-Colombian Andes, states could collect taxes in potatoes because of an ingenious method of making them light-weight and non-perishable. The Inka and the people of Tiwanaku both knew how to freeze dry potatoes during the winter nights of the high Andes. This preserved potato is called chuño: there are two types, a grey one and a white one, called tunta, which is soaked in water during processing. Both types are as hard and dry as wood. With the water removed, the potato loses weight and can be stored for years. Potatoes were portable once they were transformed into chuño. The Inka taxed their subjects in chuño, as well as maize. Both of these foods were kept in royal storehouses. Chuño was simply soaked in water and boiled to make them edible.

The Inka Empire was large and complex, eventually spanning most of the Andes, from Ecuador to northern Argentina. Like Old World states, the Inka collected taxies in grain: maize in this case. But unlike other classic civilizations, the Inka and an earlier state, Tiwanaku were also largely sustained by a perishable tuber crop, thanks to ingenious recipes for preserving the potato as chuño.

The modern cities of Peru and Bolivia have kept few vestiges of the ancient states that preceded them. But you can still buy chuño in Andean markets and even at upscale supermarkets. The ancient states are gone. Their art works are now curiosities in museums, yet the crops the Inka grew and their imaginative methods of preserving and serving food are still very much alive.

Earlier blog stories

The bad old days

The tyrant of the Andes

Further reading

Finucane, Brian Clifton 2009 “Maize and Sociopolitical Complexity in the Ayacucho Valley, Peru.†Current Anthropology 50(4):533-545.

Haas, Jonathan & Winifred Creamer 2006 “Crucible of Andean Civilization: The Peruvian Coast from 3000 to 1800 BC.†Current Anthropology 47(5):745-775.

Horkheimer, Hans [1973] 2004 Alimentación y Obtención de Alimentos en el Perú Prehispánico. Lima: Instituto Nacional de Cultura. Segunda edición.

Montaño Durán, Patricia 2016 El Imperio de Tiwanaku. Tercera Edición. Cochabamba: Grupo Editorial Kipus. 249 pp.

Scott, James C. 2017 Against the Grain: A Deep History of the Earliest States. New Haven: Yale University Press.

Making a lighter dryer June 10th, 2018 by

Vea la versión en español a continuación

Fundación Valles, an NGO in Bolivia that does agricultural research and development, has developed a peanut dryer that uses sunlight to help prevent groundnuts from developing the molds that produce deadly aflatoxins. The prototype model had an A-shaped metal frame, raised off the ground, and was covered in a special type of light yellow plastic sheeting known as agrofilm, able to withstand long exposure to sunshine. The dryer kept out water, and with air flowing in from the ends of the dryer, the peanuts could dry even on rainy days.

Two years ago, in Chuquisaca Fundación Valles worked with farmers to develop cheaper versions of the dryer, making the A-shaped frames from wooden poles, instead of metal, and began distributing large sheets of agrofilm, 2 by 12-meters, for which farmers paid $14, half the original cost. Fundación Valles encouraged the farmers to continue adapting the original design of the dryer. In May 2018 I visited some of these farmers together with agronomists Walter Fuentes and Rolando Rejas of Fundación Valles, to find out what had happened.

When Augusto Cuba, in Achiras, received the agrofilm from Fundación Valles in 2016, he did not put it to immediate use. The weather was dry during several harvests, but during the rainy days during the peanut harvest in May, 2018, don Augusto put the agrofilm to the test. He took a plastic tarp to his field and laid it on the ground. He covered it with freshly harvested groundnuts, cut the agrofilm in half, and then placed the six meter length on top.

Don Augusto ignored the basic design of the dryer. He didn’t want to go to all of the trouble of cutting poles and building the raised platform of wooden poles. His design was much simpler and portable: as he worked in the field he could remove the agrofilm when the sun came out, and put it back when it started to drizzle again. The main disadvantage, however, was that the air did not flow over the covered nuts; humidity could build up, allowing mold to develop.

The original tent-like dryer has several limitations. It is expensive, and as don Augusto pointed out to us, it is a lot of work to make one from wood. At harvest, peanuts are heavy with moisture. The pods lose about half their weight when dried. So farmers dry their peanuts in the field, and sleep there for several nights to protect the harvest from hungry animals. A solar dryer must be carried to the field, yet these may be up to an hours’ walk from home and involve climbing up and down steep slopes. Farmers who are using the original solar dryer, as designed by Fundación Valles, are those who have their fields close to home. Yet even taking a simple tarp to the harvesting site would be an improvement over drying the pods on the bare ground.

Later I had a chance to discuss don Augusto’s method for drying peanuts with Miguel Florido, an agronomist with Fundación Valles, and with Mario Arázola, the leader of APROMANI (a peanut farmers’ association). They were concerned that don Augusto´s design would trap in too much moisture, especially if it was misty all day and the farmer never had a chance to remove the agrofilm. We agreed that a dryer had to have a few simple agronomic criteria; it had to keep out the rain, keep the groundnuts off the ground, and let air flow through.

After discussing don Augusto’s case, we agreed that a dryer also has to meet some of the farmers’ criteria: it has to be cheap, portable and able to handle large volumes of peanuts, while keeping them out of the rain.

Aflatoxin contamination is a serious problem worldwide, and while it can be addressed, inventing a simple technology is hard work. Researchers start with a problem and some ideas to solve it, like air flow and keeping peanuts dry. But it is only after offering farmers a prototype that researchers can see the farmers’ demands. For example, designing a stationary dryer helps researchers to see that farmers need a portable one. Making and using a small dryer in the field highlights the need for a larger one. These types of demands only emerge over time, as in having a long, slow conversation, but one that is worth having.

HACER UN SECADOR MÃS LIGERO

Por Jeff Bentley, 10 de junio del 2018

Fundación Valles, una ONG en Bolivia dedicada a la investigación y el desarrollo agrícola, ha desarrollado un secador de maní que usa la luz solar para ayudar a evitar que los maníes (cacahuates) desarrollen los mohos que producen aflatoxinas mortales. El modelo prototipo tenía un armazón de metal en forma de A, levantado del suelo, y estaba cubierto con un tipo especial de lámina de plástico amarillo claro conocida como agrofilm, capaz de soportar la exposición prolongada al sol. El secador no dejaba pasar el agua, y con el aire que entraba desde los extremos del secador, los maníes podrían secarse hasta en días lluviosos.

Hace dos años, en Chuquisaca, la Fundación Valles trabajó con los agricultores para desarrollar versiones más baratas del secador, haciendo los marcos en forma de A de postes de madera, en lugar de metal, y comenzó a distribuir grandes láminas de agrofilm, de 2 por 12 metros, para lo cual los agricultores pagaban $14, la mitad del costo original. La Fundación Valles alentó a los agricultores a seguir adaptando el diseño original del secador. En mayo de 2018 visité a algunos de estos agricultores junto con los agrónomos Walter Fuentes y Rolando Rejas de la Fundación Valles, para averiguar qué había pasado.

Cuando Augusto Cuba, en Achiras, recibió el agrofilm de la Fundación Valles en 2016, no lo puso en uso de una vez. No hacía falta porque hacía sol durante varias cosechas, pero cuando los días lluviosos durante la cosecha de maní en mayo del 2018, don Augusto puso a prueba el agrofilm. Él llevó una lona de plástico a su parcela y la puso en el suelo. Lo cubrió con maní recién cosechado, cortó el agrofilm por la mitad y lo colocó sobre su cosecha.

Don Augusto no copió el diseño básico del secador. No quería tomarse la molestia de cortar postes y construir la plataforma elevada de postes de madera. Su diseño era mucho más simple y portátil: mientras trabajaba en el campo, podía quitar el agrofilm cuando salía el sol y volver a colocarlo cuando comenzaba a lloviznar nuevamente. La principal desventaja, sin embargo, era que el aire no fluía sobre el maní cubierto; la humedad podría acumularse, posiblemente permitiendo que se forme el moho.

El secador original en forma de carpa tiene varias limitaciones. Es caro, y como nos señaló don Augusto, es mucho trabajo hacer uno con madera. En la cosecha, los maníes son pesados con la humedad. Las vainas pierden más o menos la mitad de su peso en el secado. Entonces los agricultores secan su maní en el campo y duermen allí varias noches para proteger la cosecha de los animales hambrientos. Un secador solar debe llevarse al campo, aunque puede tardar hasta una hora a pie desde su casa e implica subir y bajar pendientes fuertes. Los agricultores que sí usan el secador solar original, tal como lo diseñó Fundación Valles, son aquellos que tienen sus campos cerca de la casa. Sin embargo, incluso llevar una lona simple al sitio de cosecha sería mejor que secar las vainas sobre el puro suelo.

Más tarde tuve la oportunidad de discutir el secador de don Augusto con Miguel Florido, un agrónomo de la Fundación Valles, y con Mario Arázola, el líder de APROMANI (una asociación de agricultores de maní). Les preocupaba que el diseño de don Augusto atrapara demasiada humedad, especialmente si estaba nublado todo el día y el agricultor no podía quitar el agrofilm. Acordamos que un secador debía tener unos pocos criterios agronómicos simples; debía proteger el producto de la lluvia, evitar contacto entre el suelo y los maníes y dejar que el aire fluyera.

Después de discutir el caso de don Augusto, acordamos que un secador también debe cumplir con algunos de los criterios de los agricultores: tiene que ser barato, portátil y capaz de manejar grandes cantidades de maní, mientras los mantiene fuera de la lluvia.

La contaminación por aflatoxinas es un problema serio en todo el mundo, y aunque se puede solucionar, inventar una tecnología simple es un trabajo duro. Los investigadores comienzan con un problema y algunas ideas para resolverlo, como el flujo de aire y el maní seco. Pero es solo después de ofrecer a los agricultores un prototipo que los investigadores pueden ver las demandas de los agricultores. Por ejemplo, diseñar un secador estacionario ayuda a los investigadores a ver que los agricultores necesitan uno portátil. Hacer y usar un pequeño secador en el campo resalta la necesidad de un más grande. Este tipo de demandas solo surgen con el tiempo, como en una conversación larga y lenta, pero que vale la pena tener.

Design by Olean webdesign