WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Repurposing farm machinery September 20th, 2020 by

Many farmers in Europe and North America are burdened with debts due to the heavy investments they have made over the years to buy farm machinery. A new tractor easily costs 100,000 Euro or more. New agricultural policies often force farmers to change as well. When environmental policy outlawed the spread of liquid manure on the surface of the field, manufacturers quickly adapted: manure is now directly injected into the soil. But this may oblige farmers to get rid of machinery that still works. What solutions can research offer to repurpose farm equipment? These thoughts have gradually come to my mind, living in a farming village in north-eastern Belgium and observing the various changes.

Farmers creatively adapt in many ways. Our friend, Johan Hons, uses a leek planter to transplant sweet maize seedlings on his organic farm to reduce the need for weeding. Like many farmers, Johan has his own workshop where he adjusts equipment to suit his needs.

American and European farmers see the soaring prices of equipment as one of their key challenges. Besides, equipment has become so complicated and repair is stymied by proprietary software and a lack of available parts. As a response, many farmers are now buying simpler, and much cheaper second-hand tractors from the 1970s and ’80s.

Also, local service providers have repositioned themselves and taken over many of the farm operations. And the fewer local service providers there are, the more pressure they can put on farmers, often charging fees that further eat into farmers’ meagre profit margins. Many machines, like the ones that inject liquid manure into the soil, have become so big that they are often wider than the country lanes, damaging them and forcing cyclists to jump off the road to save their lives whenever these machines roar by.

But there are also positive changes in the development of new machinery, which are not about making them bigger and heavier. Until last year, our local machine provider needed three tractors to collect grass for silage. One tractor raked up the grass and filled a wagon pulled by a second tractor. Meanwhile, a third tractor hauled the grass to the farmstead, to fill the silo, before running back to the field so the second tractor could empty its load. No time was wasted. This year, I noticed a single machine picking up the cut grass. This meant that the tractor then needed to drive to the farm where the silage was made, but to finish this entire field with just one tractor only took an hour longer than with three tractors and drivers, a big savings in labour, machinery and fuel.

Due to tillage and use of agrochemicals, many soils have become depleted of organic matter and soil life. As agricultural policies for decades have supported industrial agriculture, all farmers own their own pesticide spraying equipment. So, will these become obsolete when farming transitions to more sustainable models? Or could pesticide spraying machines be used to spray the soils and crops with Effective Microorganisms or other natural biofertilizers, to bring life back into our soils and boost crop health in a natural way?

To enable the transition to more sustainable farming, appropriate machines will be required. In the Netherlands, Wageningen University & Research (WUR) has been studying intercropping for several years, involving conventional and organic farmers. By growing a variety of crops in narrow strips they were able to attract beneficial insects and slow the spread of crop disease. The researchers also found that yields are similar to those found in monocultures and labour requirements are comparable too. Reading their study, I immediately thought how intercropping would work in a highly mechanised setting. Adjusting machinery will likely be part of the solution.

With the action plan laid out in the European Green Deal, the EU aims to be climate neutral by 2050. Different sectors of society each have a responsibility to make this happen. For agriculture, the ‚ÄėFarm to fork strategy‚Äô stipulates that by 2030 pesticide use has to be reduced by 50% and chemical fertilizers by 20% in order to make food systems more sustainable.

Clearly, equipment manufacturers will continue to adjust the design of machinery, but this also comes at a cost. To keep as many farmers in business as possible, some creative thinking will be required on how to strike a balance between supporting industry to innovate and finding ways to repurpose the already available machinery park that farmers have already invested in. European family farmers are ready to adapt, but they are also being run out of business. Policy and research should lend them a hand, by inventing and promoting appropriate small machinery that can be used to serve multiple purposes. 

Related blogs

Fighting farmers

Stuck in the middle

Making a lighter dryer

Inventing a better maize chopper

From Uniformity to Diversity

Reaper madness

Tools of the imagination

Some videos on appropriate machinery

Direct seeded rice in dry conditions

Strip tillage

Rotary weeder

Silage from maize

The clod breaker: a rolling harrow

Read more

More nature in fields through strip cropping. https://weblog.wur.eu/spotlight/more-nature-in-fields-through-strip-cropping/  

The European Green Deal: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en  

Credit: The photo on harvesting an intercrop is from Wageningen University & Research. The bottom photo of intercropped field with flowers is by Fogelina Cuperus.

A video is worth 1000 words August 9th, 2020 by

A farmer learning video often does have the proverbial thousand words, but can technical information be shared through images alone? A recent study set out to see how much rice farmers in southern Benin would learn from a video if they couldn’t understand the words.

PhD candidate Laur√©ano Bede and colleagues created an experiment using a video about urea fertilizer. Over-use of this nitrogen fertilizer wastes farmers‚Äô money, pollutes waterways, and contributes to greenhouse gases. The video shows how to cut urea use by two-thirds, by making large, ‚Äúsuper-granules‚ÄĚ of fertilizer and pressing them into the wet soil, where the rice plant can absorb it, instead of scattering the urea all over the surface.

In the study, six groups of farmers watched the super-granule video. In three villages, they watched the video in their own language, Adja. One of the villages saw the video once, another watched it twice, and another saw it three times. In comparison, another set of three villages also watched the video once, twice, or three times, but they had the disadvantage of seeing it in a language they didn’t understand: English.

As expected, villagers who only saw the video once learned more if they understood the soundtrack. But the difference narrowed after several screenings. Farmers who saw the video three times, without understanding the words, learned more than farmers who saw a single screening in their native Adja language. The more people watch a video, the more they learn, especially as community members discuss it among themselves, and share their observations, even if the language is foreign.

In this particular case, the super-granule video was expertly filmed to convey information to reduce the use of chemical fertilizer. Sloppy videos may not get their point across as well. A ten-minute video has about a thousand words. If the content and images are well-chosen, the video may be able to carry its messages, even without the words.

Related blogs

Deeper nitrogen, more rice, a cooler planet

Take a stab

Further reading

Lauréano Bede, Florent Okry & Simplice D. Vodouhe 2020 Video mediated rural learning: effects of images and languages on farmers’ learning in Benin Republic. Development in Practice, DOI: 10.1080/09614524.2020.1788508

Watch the video Watch or download Urea deep placement in Adja, English or one of 29 other languages.

Trying it yourself May 24th, 2020 by

Helping to write a script for a farmer training video on vermiwash triggered my interest in trying it out myself, as I began to wonder if ideas from tropical India could work in temperate Belgium.

As the video explains, vermiwash is the liquid that is collected after water passes through compost made by earthworms. It is rich in plant growth hormones, micro-nutrients like iron and zinc, and major nutrients like nitrogen, phosphorous and potassium. Vermiwash increases the number of beneficial micro-organisms in the soil and helps plants to grow healthy.

After showing the problem of declining soil health due to the overuse of agrochemicals, the video quickly moves on to some powerful, motivational interviews by some local farmers in Tamil Nadu, in southern India.

‚ÄúWhen you want to mix vermicompost with the soil, you need large quantities. But vermiwash can be applied directly to plant leaves, so you need less and you can see the effect on plant growth faster. It is also cheaper than compost,‚ÄĚ says farmer Sivamoorthi.

Besides the liquid vermiwash, I had also helped another of our Indian partners, WOTR, develop a video on vermicompost, which is solid, and stronger than normal compost . But, I was more attracted to the idea of making vermiwash, as it requires little space and I could easily use it as a foliar spray on my vegetables, berry shrubs and fruit trees.

At the local hardware store, I bought a barrel with a tap at the bottom. The first drafts of the script mentioned that it is best to fill the bottom of the barrel with small stones, so the tap doesn‚Äôt get blocked. I did exactly that. In the final version of the video, this part was removed. When I asked Shanmuga Priya, who made this video, she said: ‚ÄúAfter I talked to farmers it seems no one is doing this, because after three months they empty the barrel, remove the earthworms and then put the compost on their field. Of course, they don‚Äôt want stones to be mixed with the compost.‚ÄĚ

Indian farmers just use a small piece of mosquito netting or cotton cloth as a filter. Right, that was a good lesson; farmers always find a way to improve any technique they learn from extension staff. I still have the bottom of my barrel filled with pebbles, and so far so good. I will have to make the extra effort of sorting out the stones when setting up a new batch of vermiwash.

The video says to fill the bottom with some 10-15 centimetres of dried leaves, not green ones, which would slow down decomposition. As I had plenty of dried oak leaves, and even though they decompose slowly, I wondered if they would work, but hey, that’s what I have, so that’s what I will try.

Then the video shows how an equal amount of rice straw is added. Instead, I used wheat straw, as I still have plenty of bundles in the attic of our shed.

The next part was also a little tricky. While the video suggested using 5 to 10 kg of decomposed cow dung, I wondered if the dung of my sheep would work just as well. It was a discussion I had had several times with Indian partners, who always say that only cow dung is a useful source of beneficial microorganisms. I asked a friend of mine, who is soil scientist, and still did not get a clear answer to this. Soil scientists are trained more in the physical and chemical properties of soil and are less familiar with its complex biology. But that is food for another blog story.

After adding some water to the barrel, I collected a few handfuls of earthworms from my compost and put them into the barrel. I would soon see if my set up would work or not. While farmers in India can collect vermiwash after just 10 days, I realised that the early days of spring in Belgium are still too cold, so the worms are not that active yet. Six weeks later, though, we happily collected our first litre of brown vermiwash.

After diluting it with ten litres of water, I sprayed the vermiwash on the leaves of my rhubarb as an experiment, before putting it on any other plants. In just a few days the leaves turned a shiny, dark green. The plants looked so healthy, that neighbours even remarked on it and asked what I had given them.

My wife, Marcella, had been rearing vegetable seedlings in a small glass house, and when the time came to transplant them to the garden, she decided to set up a small experiment. One batch of mustard leaf seedlings would be planted straight in the soil, the other batch she would soak the roots of the seedlings for 15 minutes in pure vermiwash. After all, the video shows that this works with rice seedlings, so why not with vegetable seedlings?

And again, the effect was striking: all of the seedlings dipped in the vermiwash took root quickly, while in the other batch only a fraction did.

As Jeff has written in some earlier blogs, the Covid-19 crisis has stopped people from travelling, affecting many farmers (see: Travelling farmers), students (see: A long walk home) and society at large. It has also forced people to creatively use their time. Like many other people, we have been able to spend more time in the garden, and in our case, we were able try out some of the things we learned from farmers in the global South.

As we tried oak leaves, wheat straw and sheep dung instead of the ingredients used by Indian farmers, we found that vermiwash works as well in Flanders as it does in Tamil Nadu. Good training videos inspire people to experiment with new ideas and adapt these to their own conditions. That is the philosophy and approach of Access Agriculture: using video as a global source of inspiration.

Related blogs

Earthworms from India to Bolivia

Encouraging microorganisms that improve the soil

Effective micro-organisms

Friendly germs

Related videos, freely downloadable from www.accessagriculture.org

Vermiwash: an organic tonic for crops

Making a vermicompost bed

Good microbes for plants and soil

Offbeat urban fertilizer May 17th, 2020 by

Some urbanites in Covid lockdown are rediscovering their neglected gardens. Living in or near the city also gives you access to some products that are hard to find in farm country. For example, cabinet makers in the city may be able to give you wood shavings that you can use to make beds for pigs or chickens.

I‚Äôve written before about the Taqui√Īa brewery that releases waste water‚ÄĒsometimes with a fine head of beer on it‚ÄĒwhile at other times it has detergent, or barley hulls, or it is clear. An irrigators‚Äô association channels the water to grow carnations and other high value crops.

Taqui√Īa has its factory in the foothills above Cochabamba, Bolivia, where spent, fermented barley mash, the grain solids left over from beer brewing, is heaped into large piles. We occasionally notice the mash when we park at the brewery to hike in the mountains. Ana always said it would make a good organic fertilizer, but it wasn‚Äôt until February last year that she decided to do something about her idea. The brewery was happy for her to take the mash, on one condition: she had to take it all.

Ana rented a vintage truck and hired a driver, then returned to the brewery with a shovel and a hired helper. The mash was golden brown, with a light, yeasty smell, and all appeared fine until they dug into it. Inside the pile was rotten and flies had laid their eggs in it, the result of staying out too long in the rain. Peri-urban farmers use the mash to feed their pigs, but they hadn’t been to collect it for some time.

Ana and her helpers made three trips home with around ten tons of mash. The mash smelled like sewage and it had the thick, sticky consistency of children’s modelling clay. I called it the stinky playdough.

Our neighbors had some choice words about the stench. Eventually we managed to get all of the stinky playdough spread over our small garden and the stench gradually disappeared. The flies went away, the plants grew and we forgot about the rotten mash. Until we were quarantined.

By March of this year our garden was overgrown with weeds. But then I found time in the evenings and the weekends to pull up the weeds and plant some vegetable beds. Years ago, the dirt in our garden was dull red, and lifeless, but after taking on the stinky playdough, the soil was rich and black, full of earthworms and just right for growing organic vegetables.

If I had to do it again, I would look for smaller, fresher batches of barley mash. Even so, the obnoxious, stinky playdough turned out to be a great fertilizer. Ana also collects a few other sources of organic matter, including lawn clippings from the neighbors. A lady who sells fresh-squeezed juice in the park gives us orange rinds, which compost quickly in Cochabamba.  

Cities have abundant organic matter, partly from urban gardens, but mainly pulled in from the countryside. With a little creativity, you can grow your own healthy food in the city at low cost, without the need for chemical fertilizer.

Related blog stories

Smelling is believing

Trash to treasure

A revolution for our soil

Related videos

Using sack mounds to grow vegetables

Mulch for a better soil and crop

Making a vermicompost bed

Vermiwash: an organic tonic for crops

On using wood shavings to raise chickens near the city:

Working together for healthy chicks and

Making a business from home raised chicks

Further reading

Bentley, Jeffery W. 2015 ‚ÄúFlowers Watered with Beer.‚ÄĚ Agriculture for Development 26:20-22.

Friendly germs April 5th, 2020 by

Vea la versi√≥n en espa√Īol a continuaci√≥n

At a recent event in Cochabamba, just before Bolivia went into lockdown over coronavirus, I had a rare opportunity to see how to make products or inputs used in agroecological farming.

The organizers (the NGO Agroecología y Fe) were well prepared. They had written recipes for the organic fertilizers and natural pesticides, an expert to explain what each product did and to show the practical steps. The materials for making the inputs were neatly laid out in a grassy meadow. We had plenty of space to build fires, mix materials such as cow dung with earth and water, and to stand and chat. Agronomist Freddy Vargas started by making bokashi, which extensionists have frequently demonstrated in Latin America for decades, especially among environmentally sensitive organizations.

Bokashi is sometimes described as fertilizer, but it is more than that; it is also a source of minerals and a culture of microorganisms. Freddy explained that for the past 25 years, ever since university, he has been making bokashi. He uses it on his own farm, and teaches it to farmers who want to bring their soil back to life.

Freddy mixes leaf litter and top soil from around the base of trees (known as sach‚Äôa wanu (‚Äútree dung‚ÄĚ) in Quechua. The tree dung contains naturally occurring bacteria and fungi that break down organic matter, add life to the soil and help control plant diseases. Freddy adds a few packets of bread yeast for good measure. As a growth medium for the microbes, he adds rice bran and rice husks, but any organic stuff would work. Next, raw sugar is dissolved in water, as food for the microorganisms. He also adds minerals: rock flour (ground stone) and ‚Äúfosfito‚ÄĚ (rock flour and bone flour, burned on a slow fire). The pile of ingredients is mixed with a shovel, made into a heap and covered with a plastic tarpaulin, to let it ferment. Every day or so it gets hot from fermentation, and has to be turned again. The bokashi will be ready in about two weeks, depending on the weather.

This elaborate procedure is why it has taken me some time to accept bokashi.  It seemed like so much work. Freddy explained that he adds bokashi to the surface of the soil on his farm, and over the years this has helped to improve the soil, to allow it to retain water. ‚ÄúWe used to have to water our apple trees every two days, but now we only have to irrigate once a week,‚ÄĚ he explained. His enthusiasm and clear evidence of benefits made me re-assess my previous skeptical view of bokashi.

Next, agronomist Basilio Caspa showed how to make biol, a liquid culture of friendly microbes. He mixed fresh cow dung, raw sugar and water with his hands, in a bucket, a demonstration that perplexes farmers. ‚ÄúHow can an educated man like you mix cow dung with your hands?‚ÄĚ But Basilio enjoys making things, and he is soon up to his elbows in the mixture before pouring it into a 200-liter barrel, and then filling it the rest of the way with water.

Basilio puts on a tight lid, to keep out the air, and installs a valve he bought for 2 pesos at the hardware store, to let out the methane that is released during the fermentation. The biol will be ready in about four weeks, to spray on crops as a fertilizer and to discourage disease (as the beneficial microorganisms control the pathogens).  Basilio has studied biol closely and wrote his thesis on it. He found that he could mix anything from half to two liters of biol into a 20 liter back pack sprayer. Higher concentrations worked best, but he always saw benefits whatever the dilution.

We also learned to brew a sulfur lime mix, an ancient pesticide. This is easy to make: sulfur and lime are simply boiled in water.

But do farmers actually use these products?

Then Mar√≠a Omonte, an agronomist with profound field experience, shared a doubt. With help from Agroecolog√≠a y Fe, she had taught farmers in Sik‚Äôimira, Cochabamba to make these inputs, and then helped the communities to try the inputs on their farms. “In Sik‚Äôimira, only one farmer had made bokashi, but many had made biol.‚ÄĚ This seasoned group agreed. The farmers tended to accept biol more than bokashi, but they were even more interested in the brews that more closely resembled chemicals, such as sulfur lime, Bordeaux mix (a copper-based fungicide) and ash boiled with soap.

The group excitedly discussed the generally low adoption by farmers of these products. They suggested several reasons: first, the products with microbes are often made incorrectly, with poor results and so the farmers don’t want to make them again. Second, the farmers want immediate results, and when they don’t get them, they lose heart and abandon the idea. Besides, making biol and bokashi takes more time to prepare than agrochemicals, which is discouraging.

Bokashi and biol do improve the soil, otherwise, agronomists like Freddy would not keep using them on their own farms. But perhaps farmers demand inputs that are easier to use. The next step is to study which products farmers accept and which ones they reject. Why do they adopt some homemade inputs while resisting others? An agroecological technology, no matter how environmentally sound, still has to respond to users’ demands, for example, it must be low cost and easy to use. Formal studies will also help to show the benefits of minerals, microbes and organic matter on the soil’s structure and fertility.

Related blogs

A revolution for our soil

Strawberry fields once again

Farming with trees

The bokashi factory

Apple futures

Related videos

Good microbes for plants and soil

Vermiwash: an organic tonic for crops

Acknowledgements

The event I attended was the Congress of the Regional Soils Platform in Cochabamba, organized by the NGO Agroecología y Fe. Thanks to María Omonte, Germán Vargas, Eric Boa, and Paul Van Mele for reading a previous version of this story.

MICROBIOS AMIGABLES

Por Jeff Bentley, 5 de abril del 2020

En un reciente congreso en Cochabamba, justo antes de que Bolivia entrara en cuarentena por el corona virus, tuve la rara oportunidad, como parte de un grupo peque√Īo, de ver c√≥mo hacer insumos o productos para la agricultura agroecol√≥gica.

Los organizadores (la ONG Agroecología y Fe) estaban bien preparados con recetas escritas para los abonos y plaguicidas naturales, con un experto para cada insumo para explicar qué hacía cada producto y para mostrar los pasos prácticos. También tenían sus materiales debidamente preparados de antemano.

En un campo de pasto, teníamos mucho espacio para hacer hogueras, mezclar materiales como estiércol de vaca con tierra y agua, y para observar y charlar. El Ing. Freddy Vargas comenzó haciendo bocashi, que los extensionistas han demostrado muchas veces en América Latina durante varias décadas, especialmente entre las organizaciones sensibles al medio ambiente.

El bocashi se describe a veces como fertilizante, pero en realidad es m√°s que abono org√°nico; es tambi√©n una fuente de minerales, y microorganismos para el suelo.  Freddy explic√≥ que desde que √©l estuvo en la universidad, durante los √ļltimos 25 a√Īos, ha estado fabricando bocashi. Lo usa en su propia finca, y lo ense√Īa a los agricultores que quieren devolver la vida a su suelo.

Freddy mezcla la hojarasca y con tierra que recoge debajo de los √°rboles (conocido como sach’a wanu, en quechua, “esti√©rcol de √°rbol”). El esti√©rcol de √°rbol contiene bacterias y hongos naturales que descomponen la materia org√°nica, dan vida al suelo, y controlan las enfermedades de las plantas. Freddy agrega unos cuantos paquetes de levadura de pan por si acaso. Pone salvado de arroz y cascarilla de arroz como un medio de cultivos, pero podr√≠a usar cualquier cosa org√°nica. Tambi√©n pone minerales: harina de roca (piedra molida) y fosfito (harina de roca y harina de hueso, quemado a fuego lento). √Čl a√Īade chancaca disuelta en agua, como alimento para los microbios, luego da vuelta a todos los ingredientes con una pala, y se cubre con una lona, para dejarla fermentar. M√°s o menos cada d√≠a el bocashi se calienta por la fermentaci√≥n, y de nuevo hay que darle vuelta a la mezcla. El bocashi estar√≠a listo en unas dos semanas, seg√ļn la temperatura ambiental.

Es un procedimiento exigente, que parece mucho trabajo, pero Freddy explic√≥ que √©l agrega bocashi a la superficie del suelo en su finca para liberar los microorganismos en la tierra. A lo largo de los a√Īos esto ha ayudado a mejorar el suelo, para que retenga m√°s humedad. “Antes ten√≠amos que regar nuestros manzanos cada dos d√≠as, pero ahora s√≥lo tenemos que regar una vez a la semana”, explic√≥. Su entusiasmo y la clara evidencia de los beneficios me ayud√≥ a reevaluar mi opini√≥n esc√©ptica del bocashi.

A continuaci√≥n, el Ing. Basilio Caspa mostr√≥ c√≥mo hacer biol, un cultivo l√≠quido de microbios amistosos. En un balde, mezcl√≥ esti√©rcol fresco de vaca, chancaca y agua, explicando que cuando muestra a los agricultores c√≥mo mezclar el biol, se oponen. “¬ŅC√≥mo es que un hombre educado como t√ļ puede mezclar esti√©rcol de vaca con sus manos?” Pero a Basilio le gusta hacer cosas con las manos, y pronto est√° hasta los codos en la mezcla, antes de echarla en un barril de 200 litros, y luego llenarlo el resto con agua.

Basilio pone una tapa herm√©tica al turril, para que no entre el aire, e instala una v√°lvula que compr√≥ por 2 pesos en la ferreter√≠a para dejar salir el metano que el biol liberar√° al fermentar. En un mes, el biol estar√° listo para fumigar los cultivos como fertilizante foliar y para evitar las enfermedades (por que los microorganismos ben√©ficos controlan a los pat√≥genos).  En realidad, Basilio escribi√≥ su tesis sobre el biol. Encontr√≥ que pod√≠a mezclar desde medio litro de biol hasta 2 litros en una bomba de mochila de 20 litros, y que entre m√°s biol que pone, m√°s fuertes son las plantas. En base a eso, √©l recomiendo poner dos litros de biol para arriba en una bomba de 20 litros.

También aprendimos a preparar una mezcla de azufre y cal (caldo sulfocálcico), un antiguo plaguicida. Es fácil hacerlo; se hierve cal y azufre en agua.

¬ŅPero los agricultores realmente usan estos productos?

Entonces Mar√≠a Omonte, una ingeniera agr√≥noma con profunda experiencia de campo, comparti√≥ una duda. Con la ayuda de Agroecolog√≠a y Fe, ella hab√≠a ense√Īado a los agricultores de Sik’imira, Cochabamba, a fabricar estos insumos y luego ayud√≥ a las comunidades a probar los insumos en sus fincas. “En Sik‚Äôimira, solo un agricultor ha hecho bocashi, pero muchos han hecho biol”. Este experimentado grupo estuvo de acuerdo; as√≠ era. Los agricultores tend√≠an a aceptar el biol, m√°s que el bocashi, pero m√°s que eso, est√°n interesados en los caldos que parecen m√°s a los qu√≠micos, como el caldo sulfoc√°lcico, el caldo bordel√©s (un fungicida c√ļprico) y el caldo ceniza (ceniza hervida con jab√≥n).

El grupo discutió animadamente la poca adopción que en general hacen los productores de estos preparados. Decían que hay varias razones: una es que no siempre se hace correctamente los mezclados con microbios, y los resultados no son buenos y los productores no quieren hacerlos nuevamente. Otra razón es que los campesinos quieren resultados inmediatos, y al no ver esto desconfían y lo dejan. Además, hacer biol y bocashi requiere mayor tiempo y esfuerzo en su preparación que los agroquímicos y eso los desmotiva.

El bocashi y el biol s√≠ mejoran el suelo, si no fuera as√≠, ingenieros como Freddy no los seguir√≠an usando en su propia finca. Pero tal vez los agricultores demandan insumos m√°s f√°ciles de hacer. El siguiente paso es hacer un estudio m√°s al fondo para averiguar qu√© insumos aceptan los agricultores y cu√°les no. ¬ŅPor qu√© adoptan algunos insumos caseros y se resisten a usar otros? Una tecnolog√≠a agroecol√≥gica, por m√°s sana que sea, todav√≠a tiene que responder a las demandas de los usuarios, por ejemplo, de tener bajo costo y ser f√°cil de hacer. Este tema tambi√©n merece estudios formales sobre los efectos de los minerales, materia org√°nica y microbios a la fertilidad y estructura del suelo.

Blogs relacionados

Una revolución para nuestro suelo

En el frutillar de nuevo

La agricultura con √°rboles

The bokashi factory

Manzanos del futuro

Videos relacionados

Buenos microbios para plantas y suelo

Vermiwash: an organic tonic for crops

Agradecimientos

El Congreso de la Plataforma Regional de Suelos en Cochabamba fue organizado por la ONG Agroecología y Fe. Gracias a María Omonte, Germán Vargas, Eric Boa, y Paul Van Mele por leer una versión previa.

Design by Olean webdesign