Nederlandse versie hieronder
Ignoring signs from nature
An eye-opening book by Mark Kurlansky helps readers to reflect on current societal choices by diving into the history of a topic that may at first seem uninspiring, the cod.
For more than a thousand years Europeans have fished in remote waters, thousands of kilometres from their homeland. Conflicts between nations over fishing have an equally long and dynamic history. Until the last century, rules and regulations in the industry only aimed at securing and protecting trade (and therefore political power), never on protecting the carrying capacity of our natural system.
The North Atlantic Cod, which is a fish that lives on the bottom of the ocean, was typically caught with fishing lines, and overfishing was never at stake, or at least not until last century.
Already by the 13th century, merchants from northern Germany organised trade across Europe through their Hanseatic League. Gradually, they expanded fishing regulations in the northern waters of the Atlantic, from the Baltic Sea all the way to Iceland. Even as relations between nations shifted over the centuries, the Basques in northern Spain and southwest France were little bothered by these rules. They caught whales and cod, mainly for the Mediterranean market, while avoiding fishing grounds where other nations were active.
As early as the year 1000, the Basques had greatly expanded the international cod trade. While they had the advantage of being able to dry sea salt by evaporation, something countries further north were not able to do, they were also remarkable ship builders. Some 500 years before Columbus, the Basques were already fishing the world’s richest cod grounds along the coast of Canada, in the waters now called the Grand Banks. While other countries were keen to claim the discovery of new lands, the Basques were pragmatic traders and preferred to keep their fishing ground secret for as long as possible.
But when there are riches to harvest, secrets get out sooner or later. The 16th century gold rush to the southern part of the Americas was soon followed by the cod rush to the northern part, at first by Portugal and Spain, later also by the English, French, Dutch and Scandinavians. Access to salt to preserve fish for the trip home became a necessity as sailors explored fishing grounds across the Atlantic. (The wars fought over salt and its role in the fish and other trade are described in Kurlansky’s other inspiring book, Salt.)
In an address to the International Fisheries Exhibition in London in 1883, British scientific philosopher Thomas Henry Huxley used Darwin’s theory to convince the world that over-fishing was an unscientific and unreasonable fear. Nature would send signals as fish stocks dropped. The bountiful harvests in the northwest Atlantic gave a false impression that cod could never be extinguished, notwithstanding the observations of fishermen. This blind belief in the ability of nature to cope with human interference and the arrogant attitude to dismiss local knowledge would be reflected in Canadian government policy for the next hundred years.
While discoveries such as the telegraph allowed fishermen to learn about market prices and receive warnings about storms, fishing vessels and methods also started to change, enabling greater catches year after year.
In fact, by the 1890s, just ten years after Huxley gave his convincing speech to world leaders, fish stocks were already showing signs of depletion in the North Sea. People turned a blind eye. Instead of thinking about conservation, European fleets moved on to richer waters around Iceland. As traditional fishing with fish lines had been replaced by trawlers, nets that sweep the ocean floor entangled any fish it encountered with devastating effect on ocean biodiversity. Trawlers require more energy than the muscles of seafarers can provide, so the new ships were made possible by the introduction of the steam engine.
In Canada, the fishing grounds of the Grand Banks were at first still spared from these technological developments partly because Canadian fishermen stuck to their traditional fishing lines which required far less investment. And because the expense of using coal discouraged the European fleets from crossing the Atlantic. But it was just matters of years. Coal was soon replaced by diesel and industrial fishing boats began trawling for cod.
In the 1950s, the frozen fish stick dealt a final blow to the seemingly endless cod stocks. The breaded, tasteless fish sticks in cardboard boxes became an instant commercial success, making it “a pleasure for families to prepare, serve and eat” according to one of the adverts of that time. This change in consumption behaviour led to such a sharp increase in unsustainable fishing practices that the cod stock completely collapsed in the 1990s.
We are currently facing tremendous challenges such as climate change and loss of biodiversity, because of the way we produce and consume our food. How many more signs do we need from nature before we start to take proper decisions? Debate is all well and good, unless one side is simply wrong. Environmental arguments should not continue until human greed causes natural disaster.
Credit
Photo of cod: © Gilbert Van Ryckevorsel / WWF-Canada.
Time series for the collapse of the Atlantic northwest cod stock, capture in million tonnes. Based on FishStat database FAO. Copyright by Epipelagic under Creative Commons license CC BY-SA 3.0.
Further reading
Mark Kurlansky. 1999. Cod. A Biography of the Fish that Changed the World. Vintage: Random House UK, 304 pp.
Related Agro-Insight blogs
When the bees hit a brick wall
Signalen van de natuur negeren
Mark Kurlansky heeft een boek geschreven dat de lezer helpt na te denken over de huidige maatschappelijke keuzes, door in de geschiedenis te duiken van een onderwerp dat op het eerste gezicht misschien weinig inspirerend lijkt: de kabeljauw.
Al meer dan duizend jaar vissen Europeanen in afgelegen wateren, duizenden kilometers van hun vaderland. Conflicten tussen naties over de visserij hebben een even lange en dynamische geschiedenis. Tot in de vorige eeuw waren de regels en voorschriften in de sector uitsluitend gericht op het veiligstellen en beschermen van de handel (en dus van de politieke macht), nooit op het beschermen van de draagkracht van ons natuurlijk systeem.
De Noord-Atlantische kabeljauw, een vis die op de bodem van de oceaan leeft, werd meestal gevangen met vislijnen, en overbevissing was nooit aan de orde, althans niet tot in de vorige eeuw.
Reeds in de 13e eeuw organiseerden kooplieden uit Noord-Duitsland via hun Hanzesteden de handel in heel Europa. Geleidelijk aan breidden zij de visserijvoorschriften in de noordelijke wateren van de Atlantische Oceaan uit, van de Oostzee helemaal tot IJsland. Zelfs toen de betrekkingen tussen de naties in de loop der eeuwen veranderden, hadden de Basken in Noord-Spanje en Zuidwest-Frankrijk weinig last van deze regels. Zij vingen walvissen en kabeljauw, hoofdzakelijk voor de mediterrane markt, en vermeden visgronden waar andere naties actief waren.
Reeds in het jaar 1000 hadden de Basken de internationale kabeljauwhandel sterk uitgebreid. Terwijl zij het voordeel hadden dat zij zeezout konden drogen door verdamping, iets waartoe landen verder naar het noorden niet in staat waren, waren zij ook opmerkelijke scheepsbouwers. Ongeveer 500 jaar vóór Columbus visten de Basken reeds op ‘s werelds rijkste kabeljauwgronden langs de kust van Canada, in de wateren die nu de Grand Banks worden genoemd. Terwijl andere landen graag de ontdekking van nieuwe landen opeisten, waren de Basken pragmatische handelaars en hielden zij hun visgronden liever zo lang mogelijk geheim.
Maar als er rijkdommen te oogsten zijn, komen geheimen vroeg of laat aan het licht. De 16e-eeuwse goudkoorts naar het zuidelijke deel van Amerika werd al snel gevolgd door de kabeljauwkoorts naar het noordelijke deel, eerst door Portugal en Spanje, later ook door de Engelsen, Fransen, Nederlanders en Scandinaviërs. Zout om de vis te bewaren voor de thuisreis werd een noodzaak toen de zeelieden de visgronden aan de overzijde van de Atlantische Oceaan verkenden. (De oorlogen die om zout werden uitgevochten en de rol die zout speelde in de handel in vis en andere producten worden beschreven in Kurlansky’s andere inspirerende boek, Salt).
In een toespraak tot de Internationale Visserij Tentoonstelling in Londen in 1883, gebruikte de Britse wetenschappelijke filosoof Thomas Henry Huxley de theorie van Darwin om de wereld ervan te overtuigen dat overbevissing een onwetenschappelijke en onredelijke angst was. De natuur zou signalen afgeven als de visbestanden afnamen. De overvloedige oogsten in het noordwestelijk deel van de Atlantische Oceaan wekten de valse indruk dat de kabeljauw nooit zou kunnen uitsterven, niettegenstaande de waarnemingen van de vissers. Dit blinde geloof in het vermogen van de natuur om met menselijke verstoringen om te gaan en de arrogante houding om plaatselijke kennis terzijde te schuiven, zouden de volgende honderd jaar hun weerslag vinden in het Canadese regeringsbeleid.
In feite vertoonden de visbestanden in de Noordzee in de jaren 1890, slechts tien jaar nadat Huxley zijn overtuigende toespraak voor de wereldleiders had gehouden, reeds tekenen van uitputting. Iedereen kneep een oogje dicht. In plaats van na te denken over natuurbehoud, verplaatsten de Europese vloten zich naar rijkere wateren rond IJsland. De traditionele visvangst met vislijnen was inmiddels vervangen door boten met sleepnetten die de oceaanbodem schoonvegen en alle vis verstrikken die ze tegenkomen, met verwoestende gevolgen voor de biodiversiteit in de oceanen.
In Canada bleven de visgronden van de Grand Banks aanvankelijk nog gespaard van deze technologische ontwikkelingen, deels omdat de Canadese vissers vasthielden aan hun traditionele vislijnen die veel minder investeringen vergden. En omdat de kosten van het gebruik van steenkool de Europese vloten ervan weerhielden de Atlantische Oceaan over te steken. Maar het was slechts een kwestie van jaren. Steenkool werd al snel vervangen door diesel en industriële vissersboten begonnen met de sleepnetvisserij op kabeljauw.
In de jaren 1950 deelde de bevroren visstick een laatste klap uit aan de schijnbaar eindeloze kabeljauwbestanden. De gepaneerde, smaakloze vissticks in kartonnen dozen werden een onmiddellijk commercieel succes, waardoor het “voor gezinnen een plezier werd om te bereiden, op te dienen en te eten” volgens een van de advertenties uit die tijd. Deze verandering in het consumptiegedrag leidde tot zo’n sterke toename van niet-duurzame visserijpraktijken dat het kabeljauwbestand in de jaren negentig volledig instortte.
Door de manier waarop wij ons voedsel produceren en consumeren, staan wij momenteel voor enorme uitdagingen, zoals de klimaatverandering en het verlies van biodiversiteit. Hoeveel signalen van de natuur hebben we nog nodig voordat we de juiste beslissingen gaan nemen? Debatteren is allemaal goed en wel, tenzij één partij het gewoon bij het verkeerde eind heeft. De milieudiscussie moet niet worden voortgezet tot de hebzucht van de mens een natuurramp veroorzaakt.
Vea la versión en español a continuación
In last week’s blog (We think with our hands), I wrote that people use gestures intentionally to convey meaning, while many other hand movements are unconscious. Moving our hands helps us to grasp the right words. But human speech is also much more than words and hand gestures.
Tone and volume of voice (screaming, whispering), facial expression, head movements (like nodding) and body language (slouching vs standing ramrod straight) all help to reinforce meaning and to convey emotion. We also make humming and clicking noises, which are sounds, but not speech. This non-verbal communication is convincing because it’s natural. We can spot the difference; a phony smile is made with the lips only, while you use your whole face for a sincere one.
At Agro-Insight, when we make videos with farmers, we never tell them what to say. We ask them questions, and film their answers, which we transcribe and translate into other languages. For example, if the farmer is speaking Arabic, we will use her voice in the Arabic version of the video, but we will dub over her voice for the English, French and other versions.
In these learning videos, the farmers’ non-verbal communication is typical of unscripted, sincere speech. For example, in a video filmed in India, farmer Maran explained that he had a problem with the neighbors’ turtles coming into his fish pond to eat their feed. As he said that, he moved his hands as if to suggest movement from one place to another. After hiring professional turtle catchers to remove the unwanted guests, everything was fine, an idea he reinforced by patting both hands downwards in a comforting gesture. The film crew didn’t tell him to do that. Unless you watch the Tamil version of the video, you will hear a voice artist dubbing Mr. Maran’s words, but you can still tell that his gestures go with his narrative.
In the final cut of the video, we usually leave in some of farmers’ original voice, before starting the voiceover. This lets the audience hear some of the emotion. For instance, in our video on feeding dairy goats, Teresia Muthumbi explains that when she gives her goats banana stems with sweetpotato vines and a little grass, “They give a lot of milk.” She is speaking from experience: you can hear the sound of authority in her voice, even if you don’t understand Swahili.
In one video from Togo, farmer Filo Kodo tells how the maize harvest had increased a lot after rotating the corn with velvet bean (mucuna). One neighbor even asked her what magic she had used. “I told him it was with mucuna magic,” she said, and you can see the smile in her eyes as well as on her lips.
I’ve written before how smallholders in Malawi called people on the farmer learning videos their “friends”, even though they had never met (Friends you can trust). Farmers in Uganda referred to their “brothers and sisters” in West Africa, who they had only seen on the videos.
When people speak from the heart, their tone, gestures, expressions and body language convey conviction, even if the words themselves are translated into another language, and spoken by another person. Non-verbal communication adds a richness, a sincerity that is hard to fake. This is one reason why realistic farmer-to-farmer training videos are a far richer experience than fully animated videos.
Further reading
Bentley, Jeffery, Paul Van Mele, and Grace Musimami 2013. The Mud on Their Legs – Farmer to Farmer Videos in Uganda. Agro-Insight. MEAS Case Study # 3.
Watch the videos mentioned in this blog
Stocking fingerlings in a nursery pond
GESTOS QUE CONVENCEN
Por Jeff Bentley, 31 de enero del 2021
En el blog de la semana pasada (Pensamos con las manos), escribí que las personas usan los gestos a propósito para transmitir un significado, mientras que muchos otros movimientos de las manos son inconscientes. Mover las manos nos ayuda a captar las palabras que buscamos. Pero la comunicación humana es también mucho más que palabras y gestos con las manos.
El tono y el volumen de la voz (gritos, susurros), la expresión facial, los movimientos de la cabeza (como para asentir) y el lenguaje corporal (ponerse cómodo o mantenerse erguido) ayudan a reforzar el significado y a transmitir emociones. También emitimos zumbidos y chasquidos, que son sonidos, pero no son palabras. Esta comunicación no verbal es convincente porque es natural. Podemos notar la diferencia; una sonrisa falsa se hace sólo con los labios, mientras una sincera es con toda la cara.
En Agro-Insight, cuando hacemos videos con agricultores, nunca les decimos lo que tienen que decir. Les hacemos preguntas y filmamos sus respuestas, que transcribimos y traducimos a otros idiomas. Por ejemplo, si la agricultora habla en árabe, usamos su voz de ella en la versión árabe del video, pero la doblamos para las versiones en inglés, francés y otras.
En estos videos de aprendizaje, la comunicación no verbal de los agricultores es la típica del habla sincera y sin guion. Por ejemplo, en un video grabado en la India, el agricultor Maran explicó que tenía un problema con las tortugas de los vecinos que entraban en su estanque de peces para comer su alimento. Mientras lo decía, movía las manos como si quisiera sugerir un movimiento de un lugar a otro. Después de contratar a cazadores profesionales para eliminaran a las tortugas, todo estaba bien, idea que reforzó dando palmaditas con ambas manos hacia abajo en un gesto de satisfacción. El equipo de filmación no le dijo que hiciera eso. A menos que se vea la versión en tamil del video, se oirá a un locutor doblando las palabras del Sr. Maran, pero aun así se nota que sus gestos realmente acompañan su narración.
En la edición final del vídeo, solemos dejar algo de la voz original de la gente, antes de empezar el doblaje. Esto permite al público escuchar parte de la emoción. Por ejemplo, en nuestro video sobre la alimentación de las cabras lecheras, Teresia Muthumbi explica que cuando da a sus cabras tallos de plátano con hojas de camote y un poco de pasto, “Dan mucha leche”. Habla por experiencia: se puede oír el sonido de la autoridad en su voz, aunque no se entienda el suajili.
En un video de Togo, la agricultora Filo Kodo cuenta cómo la cosecha de maíz ha aumentado mucho después de rotar el maíz con el frijol terciopelo (mucuna). Un vecino incluso le preguntó qué magia había usado. “Le dije que era con la magia de la mucuna”, dijo, y se puede ver la sonrisa en sus ojos además de en sus labios.
Ya he escrito antes cómo los campesinos de Malawi llamaban “amigos” a las personas que aparecían en los vídeos de aprendizaje, aunque no se conocieran (Amigos confiables). Los agricultores de Uganda se referían a sus “hermanos y hermanas” de África Occidental, a los que sólo habían visto en los videos.
Cuando la gente habla con el corazón, su tono, sus gestos, sus expresiones y su lenguaje corporal transmiten convicción, aunque las palabras mismas estén traducidas a otro idioma y sean pronunciadas por otra persona. La comunicación no verbal añade una riqueza, una sinceridad que es difícil de fingir. Esta es una de las razones por las que los videos realistas de agricultor-a-agricultor son una experiencia mucho más rica que los videos de pura animación.
Lectura adicional
Bentley, Jeffery, Paul Van Mele, y Grace Musimami 2013. The Mud on Their Legs – Farmer to Farmer Videos in Uganda. Agro-Insight. MEAS Case Study # 3.
Vea los videos mencionados en este blog
Vea la versión en español a continuación
In The Fate of Food, Amanda Little (professor of journalism and science writing at Vanderbilt University) takes us on a strange journey to the cutting edge of agricultural research. Little has an astonishing knack for getting quality face time with some of the most innovative (and busy) people in the science of food.
She takes us to Shanghai to meet Tony Zhang, an entrepreneur who dreamed of being the Whole Foods (grocery store chain) of China. Zhang was so enraged when he found out that his vegetable farmers were growing special plots of organic produce just for their own families, while selling produce tainted with pesticides, that he created his own 4,000 hectare farm where he monitored his crops with electronic soil sensors that captured data on soil moisture and temperature, humidity, acidity and light absorption. The cost of managing the data and cleaning the heavily polluted soil eventually led Zhang to quit farming, but other companies continue to improve his idea of the digitalized soil sensors.
In Silicon Valley, Indian cardiologist Uma Valeti leads a startup that is culturing meat in the lab. It’s real meat, just grown in a Petri dish, not in an animal’s body. Little finds the duck meat tasty, although at over $100,000 a serving, it’s still not commercial. But costs are falling.
In Norway, commercial salmon grower Alf-Helge Aarskog is growing the fish in cages in the seawater of a fjord. Fish farmers are racing to invent technology fast enough to solve their emerging problems. Captive salmon were once fed wild sea creatures, but the diet is now 75% grain, with the goal of creating a completely vegetarian, cultivated fare. The dense populations of penned fish are a breeding ground for “sea lice,” a crustacean parasite of salmon. Aarskog is using a robot that can spot the sea lice and zap them with a laser as the fish dart through the water.
Robots are the newest farm workers on dry land as well. Peruvian engineer Jorge Heraud and colleagues in California have invented a “lettuce bot” that can thin a field by recognizing when seedlings are too dense, and kill the extra plants with a precision over-dose of chemical fertilizer. John Deere sees enough promise in the idea that the corporation recently bought Heraud’s company for $305 million.
In the USA, most lettuce is grown in California in the summer, and around Yuma, Arizona in the winter, a continent away from the big consumer markets of the East Coast. Former Cornell professor Ed Harwood and colleagues have solved this problem by growing aeroponic lettuce in an old building in Newark, New Jersey, where the plants grow under LED lights, without soil. The lettuce is marketable after 12 to 16 days instead of 30 or 45, and the plants yield four times as much as in the open field. The lettuce is grown on trays stacked high, so the yield per hectare can be 390 times as high as in a conventional farm.
The book is crowded with insights. For example, drip irrigation was invented in the 1930s by Simcha Blass, an Israeli engineer, after he observed a tree growing big and lush in the desert, thanks to a nearby, overlooked leaking faucet. Little is also cautious about some recent innovations; 90% of the maize, soy and cotton grown in the USA now is genetically modified, mostly to be grown with high doses of herbicides. Pigweed has now evolved resistance to the herbicides and infests 70 million acres (28 million hectares) in the United States.
As we learned from professor Calestous Juma, earlier in this blog (The enemies of innovation), innovations often look awkward at first; it took years for the farm tractor to become agile enough to really compete with horses. It’s hard to tell which of the innovations that Little describes will produce the food of the future. But big data, robots and more indoor farming may all be here to stay. Little starts and closes her book with a vignette about Chris and Annie Newman, a young couple in Northern Virginia raising pigs and chickens, and fruit and nut trees, with permaculture. The Newmans are pro-environment and pro-technology; they look forward to the day when they can use weeding robots on their farm. It’s just possible that digital technology of the future might tempt more young people to invest in highly productive, organic family farming.
Further reading
Little, Amanda 2019 The Fate of Food: What We’ll Eat in a Bigger, Hotter, Smarter World. New York: Harmony Books. 340 pp.
EL PORVENIR DE NUESTRA COMIDA
2 de agosto del 2020, por Jeff Bentley
En The Fate of Food (El Destino de los Alimentos), Amanda Little (profesora de periodismo y de redacción científica en la Universidad de Vanderbilt) nos lleva por un extraño viaje a la vanguardia de la investigación agrícola. Little tiene un increíble don para lograr reunirse con algunas de las personas más innovadoras (y más ocupadas) en la ciencia de los alimentos.
Nos lleva a Shanghai para conocer a Tony Zhang, un empresario que soñaba ser el Whole Foods (cadena de supermercados) de China. Zhang se enfureció tanto cuando se enteró de que sus productores de hortalizas cultivaban parcelas orgánicas especiales sólo para alimentar a sus propias familias, mientras vendían productos contaminados con plaguicidas, que creó su propia funca de 4.000 hectáreas donde supervisaba sus cultivos con sensores electrónicos del suelo que captaban datos sobre la humedad y la temperatura del suelo, la acidez y la absorción de la luz solar. Al final de cuentas, el costo de manejar los datos y limpiar el suelo bien contaminado llevó a Zhang a dejar de cultivar, pero otras empresas siguen mejorando su idea de los sensores digitalizados del suelo.
En el Valle del Silicio, el cardiólogo Uma Valeti (originalmente de la India) dirige una empresa nueva que cultiva carne en el laboratorio. Es carne de verdad, que crece en una placa de Petri, no en el cuerpo de un animal. La Profesora Little prueba la sabrosa carne de pato, aunque a más de 100.000 dólares la porción, todavía no es comercial. Pero los costos están bajando.
En Noruega, el criador comercial de salmón, Alf-Helge Aarskog, cultiva peces enjauladas en el agua salina de un fiordo. Los piscicultores inventan tecnología rápidamente para resolver los problemas a medida que emerjan. Hace pocos años, el salmón en cautiverio se alimentaba con mariscos capturados del mar, pero actualmente su dieta es 75% de granos, con la meta de llegar a un alimento completamente vegetariano. Las jaulas llenas de peces son un caldo de cultivo para los “piojos del salmón”, un crustáceo parásito. Aarskog está usando un robot que detecta los piojos de salmón y los mata con un láser mientras los peces nadan velozmente.
Los robots son los más recientes trabajadores agrícolas en la tierra firme también. El ingeniero peruano Jorge Heraud y sus colegas de California han inventado un “robot de lechuga” que puede ralear un campo, reconociendo cuando los plantines son demasiado densos, y matar los que sobran con una sobredosis de fertilizante químico, puesto con precisión quirúrgica. La empresa John Deere ve tanta promesa en la idea que ha comprado la compañía de Heraud por 305 millones de dólares.
En los Estados Unidos, la mayoría de la lechuga se cultiva en California en el verano, y alrededor de Yuma, Arizona en el invierno; la hortaliza tiene que atravesar todo el continente para llegar a los grandes mercados de la Costa Este. El ex profesor de Cornell, Ed Harwood y sus colegas han acortado esta distancia, cultivando lechuga aeropónica en un edificio viejo de Newark, Nueva Jersey, donde las plantas crecen bajo luces LED, sin suelo. La lechuga se puede vender después de 12 a 16 días en lugar de 30 o 45, y las plantas rinden cuatro veces más que en campo abierto. La lechuga se cultiva en bandejas apiladas una sobre otra, por lo que el rendimiento por hectárea puede ser 390 veces mayor que en una granja convencional.
El libro está lleno de ideas. Por ejemplo, el riego por goteo fue inventado en la década de 1930 por Simcha Blass, un ingeniero israelí, al observar un árbol que crecía grande y frondoso en el desierto, gracias a un grifo que goteaba a sus raíces. Little observa algunas innovaciones con cautela; el 90% del maíz, la soja y el algodón que se cultivan en los Estados Unidos está ahora modificado genéticamente, en su mayor parte para ser cultivado con altas dosis de herbicidas. El amaranto silvestre ha desarrollado resistencia a los herbicidas e infesta 28 millones de hectáreas en los Estados Unidos.
Como hemos aprendido del profesor Calestous Juma (vea el blog The enemies of innovation), muchas innovaciones son imprácticas al principio; tomó años para que el tractor se volviera tan ágil como el equipo jalado por caballos. Es difícil decir cuál de las innovaciones que Little describe producirá el alimento del futuro. Pero los datos en computadora, los robots y la agricultura aeropónica de repente han llegado para quedarse. Little comienza y cierra su libro con una viñeta sobre Chris y Annie Newman, una pareja joven del norte de Virginia que cría cerdos y pollos, frutales y nueces, con permacultura. Los Newman quieren cuidar el medio ambiente mientras fomentan la tecnología nueva; esperan el día en que puedan usar robots para deshierbar su finca. Tal vez la tecnología digital del futuro pueda tentar a más jóvenes a invertir en la agricultura familiar orgánica de alta productividad.
Lectura adicional
Little, Amanda 2019 The Fate of Food: What We’ll Eat in a Bigger, Hotter, Smarter World. Nueva York: Harmony Books. 340 pp.
The Pantanal wetland, shared by Bolivia and Brazil, is the size of a small sea. In the Pantanal it rains for six months, followed by a half year drought. During the rainy season the rivers overflow their banks, creating a seemingly endless sheet of shallow water reaching to the horizon. In the dry season the water retreats to the river courses. There are few trees in the Pantanal, but there are dense stands of a delicate-looking purple flower, the water hyacinth.
In the twentieth century, gardeners innocently spread the water hyacinth to Asia, Africa and elsewhere. Water hyacinth has striking blue flowers and was used to adorn ornamental fountains. But it escaped and was soon clogging lakes, ponds and municipal water supplies.
Water hyacinth is such a survivor that you can drain ponds, let the plants dry out and burn them – then watch them grow again when the pond is refilled. It’s not surprising that control options are limited, particularly in open water, such as lakes and rivers.
The plants can be hand removed, by people willing to do heavy labor in the mud, cutting and dragging water hyacinth to the shore. Even this drudgery only works if you repeat it every year.
When the water hyacinth is removed, people tend to leave it in heaps at the edge of the water, where it is unsightly and gets in the way.
I recently saw another solution for water hyacinth in Benin, in West Africa. At Songhai, a training center in Porto Novo, they harvest water hyacinth, chop it, mix it with manure and use it to make methane (biogas) for cooking. Songhai also keeps a large tank of methane to run an electrical generator when the power is out.
Making biogas isn’t for everyone, as we saw in a previous blog. The Moreno family in Peru has trained people for years to make biogas from guinea pig manure, but few if any of the trainees later made biogas at home. For this to happen you need to buy equipment, provide labor, and pay close attention to managing the microorganisms that ferment the organic matter and give off the gas.
I liked the Songhai method because they don’t just remove the water hyacinth. They treat it like raw material and they make something with it. But I wondered if using it to make biogas was profitable. A more detailed study is needed to gauge its potential to make money. The Songhai solution has one key advantage: the water hyacinth does not need to be dried, a plus because the big heaps of flesh plants hold retain a lot of water.
Water hyacinth is a water thief in some of the thirstier parts of the world. Finding uses for it may help to defray the costs of weeding it out.
Related blog story
Videos
Learn how to use water hyacinth to make a floating garden
Learn how to make biogas
Scientific name
Water hyacinth is Eichhornia crassipes.
The low-lying Netherlands is famous for its polders, the land behind the dikes, reclaimed from the sea. Beginning about 1000 AD, people made dikes, or earthen dams, to protect communities from flooding. At first the water was simply drained through canals, but with time the land in the polders subsided, and by the 1400s water was being pumped out with windmills. Thanks to hard work, investment and some clever engineering, people still live in and farm the polders.
Much of Bangladesh is also right at sea level and densely populated. So why doesn’t Bangladesh have polders too? I wondered out-loud during a recent visit last October.
“But we do! Bangladesh has many polders,” my colleague Salahuddin retorted. He explained that there was a string of some 123 polders over much of southern Bangladesh, an area where several large rivers cut the delta into finger-like strips of lowland.
The polders were built between the 1960s and the 1980s, first by the provincial government of East Pakistan, and later by the Government of Bangladesh, after independence from Pakistan in 1971.
Each polder is ringed by a low earthen embankment (basically a dike), sometimes just two meters high and made by hand. The roughly oval-shaped polders are dozens of kilometers in circumference.
The Bangladeshi polders are drained by an ingenious network of canals, radiating like veins from the center of the polder to the edge, where the flow of water is controlled by a sluice gate in the embankment.The sluice gate is a concrete structure with metal doors that can be raised by a hand-crank to let the water out during the rainy season, and lowered during the dry season to keep out the saltwater.
Originally the wetlands of the delta region had been sparsely populated by fisher-farmers who grew low yielding rice varieties that tolerated brackish water. The polders soon became attractive places to live and settlers trickled in. The people who were born in the polders tended to stay there and so populations increased.
Some of the polders have benefited from some sort of project, and have been reasonably well managed. By 2018 the better polders are like gardens, with comfortable farm houses surrounded by shimmering green rice fields.
The polders have had their share of troubles. Sometimes one of the rivers changes course, depositing a bank of silt next to the sluice gate, so the water inside the polder cannot drain out. Other problems are man-made. Loggers float timber down the canals, and when the logs reach the sluice gates, the workers take the easy route to the river. Instead of hoisting the logs around the sluice gate, the loggers force the timber through the delicate metal gates, twisting and denting them so they no longer open and close. Wealthy, powerful people sometimes block the drainage canals to raise fish in them. Or they string nets over the canal to catch fish. But this slows down the flow of water, allowing silt to settle and eventually block the canal. The canals are as wide as a highway, and can be just as difficult to maintain. So once the drainage canal stops working, villagers are unable to open them up again without help from outsiders.
The polders are essentially a government mega-project, which sounds at first like a recipe for disaster. But as one drives along the top of a polder embankment, the muddy river on one side and the tidy green fields and villages on the other, it is hard to ignore the fact that the government got something right.
Ironically, country that is flooded during the rainy season may be completely dry a few months later. Various initiatives are now promoting dry-season irrigation for high value crops besides rice, and the farmers in the polders are avidly buying motorized pumps. In many places the rich, black earth inside the polders is now producing two or three crops a year of rice, mung beans, mustard, watermelon and vegetables.
Such changes in the farming system are creating more wealth for the farmers in those polders that are well run. But it will take collaboration, for local government to protect the canals and embankments, for the private sector to provide farm supplies and buy the produce and especially for innovative farmers, to continue re-inventing the agriculture of this marvelous, human-made environment.
Further reading
In characteristic modesty it was some time before my friend Salahuddin told me that he had written his masters’ thesis on the polders of Bangladesh.
Salahuddin, Ahmad 1995 Operation and Maintenance of Small Scale Flood Control Projects: Case of Bangladesh Water Development Board. Master’s Thesis: Institute ofSocial Studies, The Hague.
See also Paul’s blog from last week on coastal Bangladesh: Floating vegetable gardens.
Acknowledgement
I am indebted to Md. Harun-ar-Rashid, Guy Jones and many others for enlightening me about polders on a recent trip to Bangladesh, supported by the Blue Gold Program, with funding from the Embassy of the Netherlands. Thanks to Harun-ar-Rashid, Ahmad Salauddin, Paul Van Mele and Eric Boa for reading and remarking on previous versions.