WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Old know-how, early warning November 22nd, 2020 by

Vea la versi√≥n en espa√Īol a continuaci√≥n

In the Bolivian Andes, some officials are starting using local knowledge to improve their early warning systems for natural disasters.

For centuries, local farmers have used the signs of nature (clouds, stars, the behavior of plants and animals) to predict disasters like hail, floods and droughts, and to forecast the welcome rains that make crops grow.

Then, starting in 2004, Prosuco (a Bolivian organization) began to organize farmers with an interest in weather and organic farming. These expert farmers, called Yapuchiris, were encouraged to teach other farmers.

In southwest Bolivia, high on the Altiplano, the local government and the Technical University in Oruro are collaborating with some of these organized Yapuchiris to provide early warning, as Professor Gunnar Guzm√°n explained in a recent webinar. As he put it: the Yapuchiris, using local knowledge of nature, are excellent at making long-term predictions, three to four months in advance. Meteorologists cannot make such predictions, although they are quite accurate at about 4 days in the future.

Olson Paravicini of the Risk Management Unit of the government of Oruro added that the Yapuchiris’ knowledge is local, so that each one forecasts the weather for his or her own community. This matters in a place as big as Oruro. At 53,558 square kilometers, Oruro is about the size of New York state, bigger than the Netherlands. To apply local knowledge of weather over such a large area, Paravicini and colleagues are collaborating with groups of Yapuchiris, gathering their predictions to compile a departmental level forecast to provide early warnings of floods and other nasty weather.

One of the Yapuchiris, Bernabé Choquetopa, also had a slot on the webinar, explaining several of the signs he looks for. For example, when the leque leque (Andean lapwing) migrates back into Oruro in September, don Bernabé looks at its wing. If the patch on the bird’s wing is green, the rains will be good. Green eggs also mean good rain, and dark eggs mean drought. The signs reinforce each other, so after explaining that the ayrampu cactus was bearing lots of fruit and that the foxes had healthy coats, don Bernabé predicted that this would be a good, normal year for rains in his part of Oruro.

Professional weather observers are now paying attention to the Yapuchiris, who are increasingly organized and well respected. Guzm√°n thinks that some of the local signs of nature are 90% accurate, a probability that increases as several are used together.

Plants and animals that have evolved in a harsh landscape may have behaviors that reflect the coming weather. Observant local people have the wisdom to pay attention to the local patterns of life. I’m optimistic when I see local scientists who have respect for this knowledge. That alone is a good sign for the future.

Related blog stories

Cultivating pride in the Andes

Reading the mole hills

To see the future

Related videos

Recording the weather

Forecasting the weather with an app

Scientific names

Ayrampu: Opuntia soehrensii

Andean lapwing: Vanellus resplendens

Andean fox: Lycalopex culpaeus

Further reading

Unfortunately, I can’t find a recording of the webinar (16 November 2020), but the seminar, the speakers and the titles of their presentations were:

Seminario Virtual Saberes Ancestrales de Bioindicadores Naturales para la Reducción de Riesgos Agropecuarios

Ing. Naida Rufino Challa, SEDAG-GAD ORU (Servicio Departamental de Agricultura y Ganadería, Gobierno Autónomo Departamental de Oruro). Mejoramiento del sistema de alerta temprana del sector agropecuario en el departamento de Oruro.

M.Sc. Ing. Gunnar D. Guzmán Vega, FCAN-UTO (Facultad de Ciencias Agrarias y Naturales, Universidad Técnica de Oruro). Efectividad de los indicadores naturales en la predicción climática en las comunidades.

Bernabé Choquetopa Rodríguez. Informante local. Pronósticos locales 2020-2021 del sur de Oruro.

Ing. Olson C. Paravicini Figueredo, UGR-GAD ORU (Unidad de Gestión de Riesgos, Gobierno Autónomo Departamental de Oruro). Bioindicadores y tecnología informática como sistema integrado de alerta temprana.

SABERES ANTIGUOS, ALERTA TEMPRANA

Por Jeff Bentley, 22 de noviembre del 2020

En los Andes bolivianos, algunas autoridades han empezado a usar los conocimientos locales para mejorar sus sistemas de alerta temprana de desastres naturales.

Durante siglos, los agricultores locales han leído los signos de la naturaleza (las nubes, las estrellas, el comportamiento de las plantas y los animales) para predecir desastres como la granizada, las riadas y las sequías, y para pronosticar las queridas lluvias que nutren a los cultivos.

Luego, a partir de 2004, Prosuco (una organizaci√≥n boliviana) comenz√≥ a organizar a los agricultores interesados en el clima y la agricultura org√°nica. Se les alent√≥ a estos agricultores expertos, llamados Yapuchiris, a que ense√Īaran a los dem√°s.

En el Altiplano del sudoeste de Bolivia, el gobierno local y la Universidad T√©cnica de Oruro est√°n colaborando con algunos de estos Yapuchiris organizados para dar una alerta temprana, como explic√≥ el Ingeniero Gunnar Guzm√°n hace poco en un webinar. Seg√ļn √©l, los Yapuchiris, con su conocimiento local de la naturaleza, hacen acertadas predicciones a largo plazo, con tres o cuatro meses de anticipaci√≥n. A cambio, los meteor√≥logos no pueden hacer eso, aunque hacen buenos pron√≥sticos a unos 4 d√≠as en el futuro.

Olson Paravicini, de la Unidad de Gesti√≥n de Riesgos del Gobierno Aut√≥nomo Departamental de Oruro, a√Īadi√≥ que el conocimiento de los Yapuchiris es local, de modo que cada uno pronostica el tiempo para su propia comunidad. Esto es importante en un lugar tan grande como Oruro. Con 53.558 kil√≥metros cuadrados, Oruro es el tama√Īo del Costa Rica, m√°s grande que los Pa√≠ses Bajos. Para aplicar el conocimiento local del tiempo en una zona tan grande, Paravicini y sus colegas est√°n colaborando con grupos de Yapuchiris, aprendiendo sus pron√≥sticos para compilar un sistema de alerta temprana a nivel departamental para predecir riadas y otros desastres clim√°ticos.

Uno de los Yapuchiris, Bernab√© Choquetopa, tambi√©n habl√≥ en el webinar, explicando varias de los indicadores que √©l busca. Por ejemplo, cuando el leque rebinar vuelve a Oruro en septiembre, don Bernab√© mira su ala. Si es verduzca, las lluvias ser√°n buenas. Los huevos verdes tambi√©n significan buena lluvia, pero los huevos oscuros significan sequ√≠a. Los signos se refuerzan mutuamente, as√≠ que despu√©s de explicar que el cactus ayrampu estaban cargados de frutos y que los zorros ten√≠an buen pelaje, don Bernab√© predijo que este a√Īo ser√≠a bueno y normal para las lluvias en su sector de Oruro.

Ahora algunos meteorólogos profesionales prestan atención a los Yapuchiris, que son cada vez más organizados y respetados. Guzmán cree que algunos de los signos locales de la naturaleza tienen una precisión del 90%, probabilidad que aumenta a medida que se usan varios indicadores juntos.

Las plantas y los animales que han evolucionado en una tierra inh√≥spita pueden tener comportamientos que reflejan el tiempo y el clima. La gente local tiene la sabidur√≠a de observar cuidadosamente a los patrones locales de vida. Soy optimista cuando veo que los cient√≠ficos locales ganan respeto por este conocimiento. Eso s√≠ es una buena se√Īal para el futuro.

Related blog stories

Cultivando orgullo en los Andes

Leyendo el nido del topo

Conocer el futuro

Videos sobre el tema

Hacer un registro del clima

Pronosticar el clima con una aplicación

Nombres científicos

Ayrampu: Opuntia soehrensii

Leque leque: Vanellus resplendens

Zorro andino: Lycalopex culpaeus

Lectura adicional

Infelizmente, no ubico una grabación del webinar (16 de noviembre del 2020), pero el seminario virtual, los discursantes y sus presentaciones eran:

Seminario Virtual Saberes Ancestrales de Bioindicadores Naturales para la Reducción de Riesgos Agropecuarios

Ing. Naida Rufino Challa, SEDAG-GAD ORU (Servicio Departamental de Agricultura y Ganadería, Gobierno Autónomo Departamental de Oruro). Mejoramiento del sistema de alerta temprana del sector agropecuario en el departamento de Oruro.

M.Sc. Ing. Gunnar D. Guzmán Vega, FCAN-UTO (Facultad de Ciencias Agrarias y Naturales, Universidad Técnica de Oruro). Efectividad de los indicadores naturales en la predicción climática en las comunidades.

Bernabé Choquetopa Rodríguez. Informante local. Pronósticos locales 2020-2021 del sur de Oruro.

Ing. Olson C. Paravicini Figueredo, UGR-GAD ORU (Unidad de Gestión de Riesgos, Gobierno Autónomo Departamental de Oruro). Bioindicadores y tecnología informática como sistema integrado de alerta temprana.

Flying pest control robots September 13th, 2020 by

My friend Steve Peck is a novelist and a professor of evolutionary ecology, whose work on mathematical models of insect populations led him to the topic of one of his short stories, about a tiny flying robot, modelled after a dragonfly. The robots would cruise the countryside, looking for insect pests, which it killed, while sparing the beneficial insects. The story seemed pretty far-fetched when it was published in 2012.

I recently told the dragonfly robot story to another friend, Keith Andrews, an entomologist with years of experience in pest control in Central America. Keith immediately seized on the robot idea. ‚ÄúHow did it run, on photovoltaic cells? Did it collect its prey in a kind of stomach or just kill them?‚ÄĚ

The story doesn’t say what powered the dragonflies, just that they snipped off bits of their prey to store in a mechanical stomach, so that researchers could identify the bugs later from their DNA.

Real life dragonflies do hunt and kill other insects, to eat. But once a predatory insect is full it rests. A robot wouldn’t need to pause and digest, and could be programmed to just keep up the slaughter all day.

‚ÄúA robot would be great for that plague of locusts in Africa,‚ÄĚ Keith said. ‚ÄúIt wouldn‚Äôt have to damage an insect much to disable it. A good zap right between the eyes or even to the thorax or abdomen would put a grasshopper out of business.”

A pest control robot could be instructed to target only the pest species of interest, and not kill anything else. It would be the ultimate ecological pest control strategy.

Since Steve published his story eight years ago, the pieces for a dragonfly robot have started to come together.

For starters, flying robots are getting better.

In The Fate of Food, Amanda Little writes that inventors already have a prototype weed-killing robot called See & Spray, that uses a large set of digital photos to distinguish cotton seedlings from weeds. As a tractor pulls See & Spray across the field, the device spots the weeds and squirts them with herbicide. (No doubt future generations of the technology may invent alternatives to herbicide; the point is that the robot can recognize weeds).

Little also describes a robot, already in commercial use, that kills sea lice, parasites of farmed salmon, by zapping the pests with a laser (in the recent blog The Fate of Food).

If you‚Äôre wondering if digital software could work to identify pests on small farms, it‚Äôs already being done. Researchers at IITA (International Institute of Tropical Agriculture) in Kenya have invented an app called Nuru (Swahili for ‚Äúlight‚ÄĚ) that instantly compares thousands of photos of diseased and healthy plants to distinguish between cassava brown streak disease, cassava mosaic disease and cassava green mite damage. The app is already being tested by 28,000 farmers in Kenya.

Art can inspire technology ahead of its time. Novels fueled the idea of space travel, but engineers made it happen. I can only hope that some young robotics designers will read Steve Peck’s story.

Further Reading

Little, Amanda 2019 The Fate of Food: What We’ll Eat in a Bigger, Hotter, Smarter World. New York: Harmony Books. 340 pp.

Peck, Steven L. 2012 Dragonfly Miscalculations. The Journal of Unlikely Entomology.

RTB 2019 Smarter farming: Using apps to diagnose crop health problems. In RTB 2019 Building for better science. Annual Report 2019. Lima, Peru. CGIAR Research Program on Roots, Tubers and Bananas. Available online at: www.rtb.cgiar.org/2019-annual-report

Building a better fruit fly trap August 16th, 2020 by

The Mediterranean fruit fly is a worthy enemy. This pest, also known as the medfly, is widespread over the tropics, attacking and spoiling oranges, mangos and many other fruits. Each female can lay 200 eggs in her brief lifetime‚ÄĒallowing rapid population growth. The medfly damages so much high value fruit, that many people would like to eradicate it entirely.

The medfly has inspired some bizarre responses, such as spraying suburban Los Angeles with Malathion (insecticide) in the 1980s. Then there is the sterile male technique, which has been used from South America to South Africa to the US citrus belt, where billion of the flies are reared in labs, and treated with enough nuclear radiation to make the males sterile. These hapless males are then dropped from airplanes to mate with wild females, who then have no offspring. These programs to eradicate fruit flies over all of Guatemala, for example) are often described as successful, cost-effective and environmentally friendly. They are also large, expensive and highly technical affairs.

Low technology has also been tried. In Bolivia, the soda pop bottle trap has been around for perhaps 20 years, although it has not been widely adopted. You take a plastic drink bottle, punch some fly-sized holes in the side, pour in half a cup of orange juice and hang the bottle from an orchard tree, about shoulder height. The flies come for the juice, fly into the hole, but usually can’t find their way out of the bottle again and drown in the juice.

It’s fine in theory, but when I saw the traps being used in the field, the farmers had quickly given up on them, allowing the orange juice to decay to a black rot. The farmers had tried a trap or two and abandoned the idea. The traps may have needed some further tweaking.

Our personal battle with the medfly began three years ago, when we couldn’t get them out of our guava tree. Entomologist Luis Crespo told us that the flies love guava so much that peach growers have to cut down their guava trees as a first step to managing the pest (The best knowledge is local and scientific). But Luis kindly gave us a pheromone trap, which attracts flies with a sexual scent lure. The flies land on the trap’s sticky surface and die.

Pheromones typically trap one particular species of fly, but we had several, and by then the soil around our guava tree was full of pupating and highly fertile fruit flies. We reluctantly pruned our guava so it wouldn’t bear fruit, but by last year we were getting fruit fly larvae in our tomatoes and even in our avocados, (not a major fruit fly host).

The war was on. We loathed the thought of fruit flies in our avocados, and this was our last chance to stamp out the fly. We uprooted all our tomatoes. Ana and her dad made dozens of traps. Even a technology made from a pop bottle can evolve. We had seen improved models displayed by students at the local fair sponsored by the agricultural college.

You can make a better trap by painting a yellow stripe around the entry holes. Fruit flies are attracted to the color yellow. Take two bottles and make a T-shaped trap. As the flies ascend from the juice to the top of the bottle, they fly into the second bottle and cannot find their way out again. During the mild winter, we may have two to four flies in each pop bottle trap, while the old traps made from a single bottle would catch one or two medflies.

It seemed like a waste to squeeze fresh juice for flies, but we learned with experience that even when the orange juice was a month old, the fruit flies still swarmed to it because they are attracted to fermenting fruits and vegetables.

Traps might also work in a commercial orchard, if you could get hundreds of pop bottles. People are starting to manufacture yellow traps and there are alternative baits (like chicha, a local, low-alcohol brew, which is already fermented and easier to get than orange juice). In spite of our improvements, one has to attack fruit flies with several weapons at once. Our traps are better for monitoring than for total fruit fly control. If not for the Covid lockdown, we would buy some low-toxic insecticide to make more lethal food traps. And we won’t know until our next avocado crop comes in if we have eradicated our fruit flies or not, but at least we have a better fly trap.

Scientific name

The Mediterranean fruit fly is Ceratitis capitata, but other fruit fly genera in Bolivia include Anastrepha and Bactrocera.

Related blog story

Guardians of the mango

Related videos

Killing fruit flies with food baits

Weaver ants against fruit flies

Collecting fallen fruit against fruit flies

Integrated approach against fruit flies

Further reading

Enkerlin, W. R., J. M. Guti√©rrez Ruelas, R. Pantaleon, C. Soto Litera, A. Villase√Īor Cort√©s, J. L. Zavala L√≥pez, D. Orozco D√°vila et al. 2017 The Moscamed Regional Programme: Review of a Success Story of Area‚ÄźWide Sterile Insect Technique Application. Entomologia Experimentalis et Applicata 164(3):188-203.

The fate of food August 2nd, 2020 by

Vea la versi√≥n en espa√Īol a continuaci√≥n

In The Fate of Food, Amanda Little (professor of journalism and science writing at Vanderbilt University) takes us on a strange journey to the cutting edge of agricultural research. Little has an astonishing knack for getting quality face time with some of the most innovative (and busy) people in the science of food.

She takes us to Shanghai to meet Tony Zhang, an entrepreneur who dreamed of being the Whole Foods (grocery store chain) of China. Zhang was so enraged when he found out that his vegetable farmers were growing special plots of organic produce just for their own families, while selling produce tainted with pesticides, that he created his own 4,000 hectare farm where he monitored his crops with electronic soil sensors that captured data on soil moisture and temperature, humidity, acidity and light absorption. The cost of managing the data and cleaning the heavily polluted soil eventually led Zhang to quit farming, but other companies continue to improve his idea of the digitalized soil sensors.

In Silicon Valley, Indian cardiologist Uma Valeti leads a startup that is culturing meat in the lab. It’s real meat, just grown in a Petri dish, not in an animal’s body. Little finds the duck meat tasty, although at over $100,000 a serving, it’s still not commercial. But costs are falling.

In Norway, commercial salmon grower Alf-Helge Aarskog is growing the fish in cages in the seawater of a fjord. Fish farmers are racing to invent technology fast enough to solve their emerging problems. Captive salmon were once fed wild sea creatures, but the diet is now 75% grain, with the goal of creating a completely vegetarian, cultivated fare. The dense populations of penned fish are a breeding ground for ‚Äúsea lice,‚ÄĚ a crustacean parasite of salmon. Aarskog is using a robot that can spot the sea lice and zap them with a laser as the fish dart through the water.

Robots are the newest farm workers on dry land as well. Peruvian engineer Jorge Heraud and colleagues in California have invented a ‚Äúlettuce bot‚ÄĚ that can thin a field by recognizing when seedlings are too dense, and kill the extra plants with a precision over-dose of chemical fertilizer. John Deere sees enough promise in the idea that the corporation recently bought Heraud‚Äôs company for $305 million.

In the USA, most lettuce is grown in California in the summer, and around Yuma, Arizona in the winter, a continent away from the big consumer markets of the East Coast. Former Cornell professor Ed Harwood and colleagues have solved this problem by growing aeroponic lettuce in an old building in Newark, New Jersey, where the plants grow under LED lights, without soil. The lettuce is marketable after 12 to 16 days instead of 30 or 45, and the plants yield four times as much as in the open field. The lettuce is grown on trays stacked high, so the yield per hectare can be 390 times as high as in a conventional farm.

The book is crowded with insights. For example, drip irrigation was invented in the 1930s by Simcha Blass, an Israeli engineer, after he observed a tree growing big and lush in the desert, thanks to a nearby, overlooked leaking faucet. Little is also cautious about some recent innovations; 90% of the maize, soy and cotton grown in the USA now is genetically modified, mostly to be grown with high doses of herbicides. Pigweed has now evolved resistance to the herbicides and infests 70 million acres (28 million hectares) in the United States.

As we learned from professor Calestous Juma, earlier in this blog (The enemies of innovation), innovations often look awkward at first; it took years for the farm tractor to become agile enough to really compete with horses. It’s hard to tell which of the innovations that Little describes will produce the food of the future. But big data, robots and more indoor farming may all be here to stay. Little starts and closes her book with a vignette about Chris and Annie Newman, a young couple in Northern Virginia raising pigs and chickens, and fruit and nut trees, with permaculture. The Newmans are pro-environment and pro-technology; they look forward to the day when they can use weeding robots on their farm. It’s just possible that digital technology of the future might tempt more young people to invest in highly productive, organic family farming.

Further reading

Little, Amanda 2019 The Fate of Food: What We’ll Eat in a Bigger, Hotter, Smarter World. New York: Harmony Books. 340 pp.

EL PORVENIR DE NUESTRA COMIDA

2 de agosto del 2020, por Jeff Bentley

En The Fate of Food (El Destino de los Alimentos), Amanda Little (profesora de periodismo y de redacci√≥n cient√≠fica en la Universidad de Vanderbilt) nos lleva por un extra√Īo viaje a la vanguardia de la investigaci√≥n agr√≠cola. Little tiene un incre√≠ble don para lograr reunirse con algunas de las personas m√°s innovadoras (y m√°s ocupadas) en la ciencia de los alimentos.

Nos lleva a Shanghai para conocer a Tony Zhang, un empresario que so√Īaba ser el Whole Foods (cadena de supermercados) de China. Zhang se enfureci√≥ tanto cuando se enter√≥ de que sus productores de hortalizas cultivaban parcelas org√°nicas especiales s√≥lo para alimentar a sus propias familias, mientras vend√≠an productos contaminados con plaguicidas, que cre√≥ su propia funca de 4.000 hect√°reas donde supervisaba sus cultivos con sensores electr√≥nicos del suelo que captaban datos sobre la humedad y la temperatura del suelo, la acidez y la absorci√≥n de la luz solar. Al final de cuentas, el costo de manejar los datos y limpiar el suelo bien contaminado llev√≥ a Zhang a dejar de cultivar, pero otras empresas siguen mejorando su idea de los sensores digitalizados del suelo.

En el Valle del Silicio, el cardiólogo Uma Valeti (originalmente de la India) dirige una empresa nueva que cultiva carne en el laboratorio. Es carne de verdad, que crece en una placa de Petri, no en el cuerpo de un animal. La Profesora Little prueba la sabrosa carne de pato, aunque a más de 100.000 dólares la porción, todavía no es comercial. Pero los costos están bajando.

En Noruega, el criador comercial de salm√≥n, Alf-Helge Aarskog, cultiva peces enjauladas en el agua salina de un fiordo. Los piscicultores inventan tecnolog√≠a r√°pidamente para resolver los problemas a medida que emerjan. Hace pocos a√Īos, el salm√≥n en cautiverio se alimentaba con mariscos capturados del mar, pero actualmente su dieta es 75% de granos, con la meta de llegar a un alimento completamente vegetariano. Las jaulas llenas de peces son un caldo de cultivo para los “piojos del salm√≥n”, un crust√°ceo par√°sito. Aarskog est√° usando un robot que detecta los piojos de salm√≥n y los mata con un l√°ser mientras los peces nadan velozmente.  

Los robots son los m√°s recientes trabajadores agr√≠colas en la tierra firme tambi√©n. El ingeniero peruano Jorge Heraud y sus colegas de California han inventado un “robot de lechuga” que puede ralear un campo, reconociendo cuando los plantines son demasiado densos, y matar los que sobran con una sobredosis de fertilizante qu√≠mico, puesto con precisi√≥n quir√ļrgica. La empresa John Deere ve tanta promesa en la idea que ha comprado la compa√Ī√≠a de Heraud por 305 millones de d√≥lares.

En los Estados Unidos, la mayoría de la lechuga se cultiva en California en el verano, y alrededor de Yuma, Arizona en el invierno; la hortaliza tiene que atravesar todo el continente para llegar a los grandes mercados de la Costa Este. El ex profesor de Cornell, Ed Harwood y sus colegas han acortado esta distancia, cultivando lechuga aeropónica en un edificio viejo de Newark, Nueva Jersey, donde las plantas crecen bajo luces LED, sin suelo. La lechuga se puede vender después de 12 a 16 días en lugar de 30 o 45, y las plantas rinden cuatro veces más que en campo abierto. La lechuga se cultiva en bandejas apiladas una sobre otra, por lo que el rendimiento por hectárea puede ser 390 veces mayor que en una granja convencional.

El libro está lleno de ideas. Por ejemplo, el riego por goteo fue inventado en la década de 1930 por Simcha Blass, un ingeniero israelí, al observar un árbol que crecía grande y frondoso en el desierto, gracias a un grifo que goteaba a sus raíces. Little observa algunas innovaciones con cautela; el 90% del maíz, la soja y el algodón que se cultivan en los Estados Unidos está ahora modificado genéticamente, en su mayor parte para ser cultivado con altas dosis de herbicidas. El amaranto silvestre ha desarrollado resistencia a los herbicidas e infesta 28 millones de hectáreas en los Estados Unidos.

Como hemos aprendido del profesor Calestous Juma (vea el blog The enemies of innovation), muchas innovaciones son impr√°cticas al principio; tom√≥ a√Īos para que el tractor se volviera tan √°gil como el equipo jalado por caballos. Es dif√≠cil decir cu√°l de las innovaciones que Little describe producir√° el alimento del futuro. Pero los datos en computadora, los robots y la agricultura aerop√≥nica de repente han llegado para quedarse. Little comienza y cierra su libro con una vi√Īeta sobre Chris y Annie Newman, una pareja joven del norte de Virginia que cr√≠a cerdos y pollos, frutales y nueces, con permacultura. Los Newman quieren cuidar el medio ambiente mientras fomentan la tecnolog√≠a nueva; esperan el d√≠a en que puedan usar robots para deshierbar su finca. Tal vez la tecnolog√≠a digital del futuro pueda tentar a m√°s j√≥venes a invertir en la agricultura familiar org√°nica de alta productividad.

Lectura adicional

Little, Amanda 2019 The Fate of Food: What We’ll Eat in a Bigger, Hotter, Smarter World. Nueva York: Harmony Books. 340 pp.

Validating local knowledge July 26th, 2020 by

Vea la versi√≥n en espa√Īol a continuaci√≥n

Paul and I have written earlier stories in this blog about the yapuchiris, expert farmer-researcher-extensionists on the semi-arid, high plains of Bolivia. At 4000 meters above sea level (over 13,000 feet), seasoned farmers know how to observe plants and animals, clouds and stars, to predict the weather, especially to answer the Big Question on their minds: when will the rains start, so I can plant my crop?

All of the yapuchiris know some traditional ways of predicting the weather. Some yapuchiris also write their observations on a special chart they have designed with their agronomist colleagues at Prosuco, an organization in La Paz. The chart, called a Pachagrama, allows the yapuchiris to record the weather each day of the year, just by penciling in a few dots, so they can see if their predictions come true, and how the rains, frosts and hail affect their crops.

It can be daunting to prove the value of local knowledge, but it is worth trying.

Eleodoro Baldivieso is an agronomist with Prosuco, which has spent much of the past year studying the results of the Pachagrama weather-tracking charts. As he explained to me recently, Prosuco took four complete Pachagramas (each one filled out over seven years) containing 42 cases; each case is a field observed over a single season by one of the yapuchiris. Comparing the predicted weather with the recorded weather allowed Prosuco to see if the Pachagramas had helped to manage risk, mainly by planting a couple of weeks early, on time, or two weeks late.

Frost, hail and unpredictable rainfall are the three main weather risks to the potato and quinoa crops on the Altiplano. In October, a little rain falls, hopefully enough to plant a crop, followed by more rain in the following months. Average annual rainfall is only 800 mm (about 30 inches) in the northern Altiplano, and a dry year can destroy the crop.

For the 42 cases the study compared the yapuchiri’s judgement on the harvest (poor, regular, or good) with extreme weather events (like frost), and the planting date (early, middle or late) to see if variations in the planting date (based on weather predictions) helped to avoid losses and bring in a harvest.

The study found that crops planted two weeks apart can suffer damage at different growth stages of the plant. For example, problems with rainfall are especially risky soon after potatoes are planted, affecting crops planted early and mid-season. Frost is more of a risk for early potatoes at the start of the season, and for late potatoes when they are flowering. Hail is devastating when it falls as the mid and late planted potatoes are flowering.

The yapuchiris are often able to accurately predict frost, hail, and rainfall patterns months in advance. Scientific meteorology does a good job predicting such weather a few days away, but not several months in advance. When you plant your potatoes, modern forecasts cannot tell you what the weather will be like when the crop is flowering. Forecasting the weather in a challenging environment is helpful, at least some of the time. Planting two weeks early or two weeks late may help farmers take best advantage of the rain, but then expose the crop to frost or hail. Changing the planting dates can help farmers avoid one risk, but not another.

The weather is so complicated that risk can never be completely managed. And because scientific meteorology cannot predict hail and frost months in advance, local knowledge fills a void that science may never replace.

Previous blog stories

Cultivating pride in the Andes

To see the future

Predicting the weather

Watch the video

Recording the weather

Watch the presentation by Eleodoro Baldivieso (in Spanish)

http://andescdp.org/cdp16/seminarios/seminario_4_respondiendo_amenazas_productivas/yapuchiris_Prosuco

Acknowledgement

This work with weather is funded by the McKnight Foundation’s Collaborative Crop Research Program (CCRP). Francisco Condori, Luciano Mamani, Félix Yana and Santos Quispe are the yapuchiris who participated in this research. Thanks to Eleodoro Baldivieso, María Quispe, and Sonia Laura of Prosuco for reading and commenting on a previous version of this story. The first two photos are courtesy of Prosuco.

VALIDANDO LOS CONOCIMIENTOS LOCALES

Por Jeff Bentley

26 de julio del 2020

Paul y yo hemos escrito historias anteriores en este blog sobre los Yapuchiris, expertos agricultores-investigadores y extensionistas en el Altiplano semi√°rido boliviano. A los 4000 metros sobre el nivel del mar, los agricultores experimentados saben c√≥mo observar plantas y animales, nubes y estrellas para predecir el clima, especialmente para responder a la Gran Pregunta en sus mentes ¬Ņcu√°ndo comenzar√°n las lluvias para yo pueda sembrar mi chacra?

Todos los Yapuchiris conocen algunas formas tradicionales de predecir el tiempo. Algunos Yapuchiris tambi√©n apuntan sus observaciones en un cuadro especial que han dise√Īado con sus colegas, los ingenieros agr√≥nomos de Prosuco, una organizaci√≥n en La Paz. El cuadro, llamado Pachagrama, permite a los Yapuchiris registrar el tiempo cada d√≠a del a√Īo, con s√≥lo dibujar algunos puntos, para que puedan ver si sus predicciones se hagan realidad y como las lluvias, heladas y granizadas afectan sus cultivos.

Puede ser difícil comprobar ese conocimiento local, pero vale la pena intentarlo.

El Ing. Eleodoro Baldivieso, de Prosuco, ha pasado gran parte del a√Īo pasado estudiando los resultados de los Pachagramas. C√≥mo √©l me explic√≥ hace poco, Prosuco tom√≥ cuatro Pachagramas completos (de siete campa√Īas agr√≠colas) y 42 casos; cada caso es una parcela observada durante una campa√Īa por uno de los yapuchiris. El comparar el tiempo previsto con el tiempo registrado permiti√≥ a Prosuco ver si los Pachagramas hab√≠an ayudado a manejar el riesgo, principalmente mediante la siembra temprana (dos semanas antes), intermedia y tard√≠a (dos semanas despu√©s).

Las heladas, el granizo y la lluvia impredecible son los tres principales riesgos meteorol√≥gicos para los cultivos de papa y quinua en el Altiplano. En octubre cae un poco de lluvia, con la esperanza de que sea suficiente para sembrar un cultivo, seguida hasta marzo por m√°s lluvia. La precipitaci√≥n media anual es s√≥lo 800 mm en el Altiplano Norte, y un a√Īo seco puede destruir la cosecha, lo mismo que un a√Īo con mucha lluvia.

Para los 42 casos el estudio comparó la evaluación del Yapchiri de la cosecha (malo, regular, o bueno) con eventos extremos de tiempo (como heladas), con las fechas de siembra (temprano, mediano, o tarde) para ver si el variar la fecha de siembra (basado en el pronóstico del Yapuchiri) ayudó a evitar pérdidas y lograr una cosecha.

El estudio hall√≥ que los cultivos sembrados a dos semanas de diferencia pueden sufrir da√Īo en diferentes etapas de crecimiento da las plantas. Por ejemplo, los problemas con las lluvias son especialmente arriesgados poco despu√©s de la siembra de la papa, afectando m√°s a la siembra tempran, a principios y mediados de la temporada. Las heladas son m√°s riesgosas para las papas tempranas al comienzo de la temporada, y para las papas tard√≠as justo en la √©poca de floraci√≥n. El granizo es devastador para las siembras intermedias y tard√≠as, si la papa est√° en flor.

Los Yapuchiris a menudo son capaces de predecir con certeza las heladas, el granizo y los patrones de lluvia, con meses de antelaci√≥n. La meteorolog√≠a cient√≠fica a menudo puede predecir ese tiempo a unos pocos d√≠as, pero con meses de anticipaci√≥n. Cuando siembras tu papa, el pron√≥stico moderno no te puede decir c√≥mo ser√° el tiempo cuando tu cultivo est√° en flor. Pronosticar el tiempo en un entorno desafiante es √ļtil, al menos parte del tiempo. Sembrar dos semanas antes o dos semanas despu√©s puede ayudar a los agricultores a aprovechar mejor la lluvia, pero se expone el cultivo a las heladas o granizo, cuando es m√°s vulnerable. Cambiar las fechas de siembra puede ayudar a los agricultores a evitar uno de los riesgos, pero no siempre a todos.

El clima es tan complicado que el riesgo nunca puede ser manejado completamente. Y debido a que la meteorología científica no puede predecir el granizo y las heladas con meses de anticipación, el conocimiento local llena un vacío que la ciencia tal vez nunca reemplace.

Historias previas del blog

Cultivando orgullo en los Andes

Conocer el futuro

Prediciendo el clima

Ver el video

Hacer un registro del clima

Vea la presentaci√≥n por Eleodoro Baldivieso (en espa√Īol)

http://andescdp.org/cdp16/seminarios/seminario_4_respondiendo_amenazas_productivas/yapuchiris_Prosuco

Agradecimiento

Este trabajo con el clima es financiado por el Programa Colaborativo de Investigación sobre Cultivos (CCRP) de la Fundación McKnight. Francisco Condori, Luciano Mamani, Félix Yana y Santos Quispe son los Yapuchiris que participaron en esta investigación. Gracias a Eleodoro Baldivieso, María Quispe, y Sonia Laura de Prosuco por leer y hacer comentaros sobre una versión previa de esta historia. Las primeras dos fotos son cortesía de Prosuco.

Design by Olean webdesign