WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Recovering from the quinoa boom October 30th, 2022 by

Vea la versión en español a continuación

In southwestern Bolivia, a whole ecosystem has been nearly destroyed, to export quinoa, but some people are trying to save it.

Bolivia’s southern Altiplano is a harsh place to live. Although it is in the tropical latitudes it is so high, over 3800 meters, that it often freezes. Its climax forest, the t’ular, is only a meter tall, made up of native shrubs, grasses and cactuses.

For centuries on the southern Altiplano, farmers grew quinoa, an annual plant with edible seeds, in the shelter of little hills. No other crop would grow in this high country. People herded llamas on the more exposed plains of the Altiplano. The farmers would take quinoa in packs, carried by llamas, to other parts of Bolivia to trade for maize, fruit and chuño (traditional freeze-dried potatoes) as well as wool, salt and jerky.

In about 2010 quinoa became a fad food, and export prices soared. Bolivian plant breeder, Alejandro Bonifacio, who is from the Altiplano, estimates that 80% of the t’ular was plowed under to grow quinoa from 2010 to 2014.This was the first time that farmers cleared the dwarf forest growing on the open plains.

After the brief quinoa boom ended, in some places, only 30% of the lands cleared on the t’ular were still being farmed. The rest had simply been turned into large patches of white sand. The native plants did not grow back, probably because of drought and wind linked to climate change.

At the start of the quinoa boom, Dr. Bonifacio and colleagues at Proinpa, a research agency, realized the severity of the destruction of the native ecosystem, and began to develop a system of regenerative agriculture.

In an early experience, they gathered 20 gunny bags of the seed heads of different species of t’ulas, the native shrubs and grasses. They scattered the seeds onto the sandy soil of abandoned fields. Out of several million seeds, only a dozen germinated and only four survived. After their first unsuccessful experience with direct seeding, the researchers and their students learned to grow seeds of native plants in two nurseries on the Altiplano, and then transplant them.

So much native vegetation has been lost that it cannot all be reforested, so researchers worked with farmers in local communities to experiment with live barriers. These were two or three lines of t’ula transplanted from the nurseries to create living barriers three meters wide. The live barriers could be planted as borders around the fields, or as strips within the large ones, spaced 30 to 45 meters apart. This helped to slow down soil erosion caused by wind, so farmers could grow quinoa (still planted, but in smaller quantities, to eat at home and for the national market, after the end of the export boom). Growing native shrubs as live barriers also gave farmers an incentive to care for these native plants.

By 2022, nearly 8000 meters of live barriers of t’ula have been planted, and are being protected by local farmers. The older plants are maturing, thriving and bearing seed. Some local governments and residents have started to drive to Proinpa, to request seedlings to plant, hinting at a renewed interest in these native plants.

The next step in creating a new regenerative agriculture was to introduce a rotation crop into the quinoa system. But on the southern Altiplano, no other crop has been grown, besides quinoa (and a semi-wild relative, qañawa). In this climate, it was impossible even to grow potatoes and other native roots and tubers.

NGOs suggested that farmers rotate quinoa with a legume crop, like peas or broad beans, but these plants died every time.

Bonifacio and colleagues realized that a new legume crop would be required, but that it would have to be a wild, native plant. They began experimenting with native lupines. The domesticated lupine, a legume, produces seeds in pods which remain closed even after the plant matures. When ancient farmers domesticated the lupine, they selected for pods that stayed closed, so the grains would not be lost in the field. But the pods of wild legumes shatter, scattering their seeds on the ground.

Various methods were tried to recover the wild lupine seed, including sifting it out of the sand. Researchers eventually learned that the seed was viable before it was completely dry, before the pod burst. After the seed dried, it went into a four-year dormancy.

In early trials with farmers, the wild lupines have done well as a quinoa intercrop. Llamas will eat them, and the legumes improve the soil. When the quinoa is harvested in March, April and May, the lupine remains as a cover crop, reaching maturity the following year, and protecting the soil.

The quinoa boom was a tragedy. A unique ecosystem was nearly wiped out in four years. The market can provide perverse incentives to destroy a landscape. The research with native windbreaks and cover crops is also accompanied by studies of local cactus and by breeding varieties of quinoa that are well-adapted to the southern Altiplano. This promises to be the basis of a regenerative agriculture, one that respects the local plants, including the animals that eat them, such as the domesticated llama and the wild vicuña, while also providing a livelihood for native people.

Further reading

Bonifacio, Alejandro, Genaro Aroni, Milton Villca & Jeffery W. Bentley 2022 Recovering from quinoa: regenerative agricultural research in Bolivia. Journal of Crop Improvement, DOI: 10.1080/15427528.2022.2135155

Previous Agro-Insight blogs

Awakening the seeds

Wind erosion and the great quinoa disaster

Slow recovery

Related videos

Living windbreaks to protect the soil

The wasp that protects our crops

Acknowledgements

Dr. Alejandro Bonifacio works for the Proinpa Foundation. This work was made possible with the kind support of the Collaborative Crop Research Program (CCRP) of the McKnight Foundation.

RECUPERÃNDOSE DEL BOOM DE LA QUINUA

Por Jeff Bentley, 30 de octubre del 2022

En el suroeste de Bolivia, todo un ecosistema casi se ha destruido para exportar quinua, pero algunas personas intentan salvarlo.

Es difícil vivir en el Altiplano sur de Bolivia. Aunque está en latitudes tropicales, está tan alto, a más de 3.800 metros, que a menudo se congela. Su bosque clímax, el t’ular, sólo tiene un metro de altura, formado por arbustos, hierbas y cactus nativos.

Durante siglos, en el Altiplano sur, los agricultores cultivaron quinua (una planta de ciclo anual y tallo herbáceo) con semillas comestibles, al abrigo de las pequeñas colinas. Ningún otro cultivo crecía en esta zona alta. En las llanuras más expuestas del Altiplano, la gente arreaba llamas. Los campesinos llevaban la quinua cargados por las llamas, a otras partes de Bolivia para intercambiarla por maíz, frutas, chuño, lana, sal, y charqui.

Hacia 2010, la quinua se convirtió en un alimento de moda y los precios de exportación se dispararon. El fitomejorador boliviano Alejandro Bonifacio, originario del Altiplano, calcula que entre 2010 y 2014 se aró el 80% del t’ular para cultivar quinua.

Tras el breve auge de la quinua, en algunas zonas solo el 30% de las tierras desmontadas en el t’ular seguían siendo cultivadas. El resto simplemente se había convertido en grandes manchas de arena blanca. Las plantas nativas no volvieron a crecer, probablemente por la sequía y el viento atribuible al cambio climático).

Al comienzo del boom de la quinua, el Dr. Bonifacio y sus colegas de Proinpa, una agencia de investigación, se dieron cuenta de la gravedad de la destrucción del ecosistema nativo, y comenzaron a desarrollar un sistema de agricultura regenerativa.

En una de las primeras experiencias, reunieron 20 gangochos conteniendo frutos con las diminutas semillas de diferentes especies de t’ulas, los arbustos nativos y pastos. Esparcieron las semillas en el arenoso suelo de los campos abandonados. De varios millones de semillas, sólo germinaron una decena que al final quedaron cuatro plantas sobrevivientes. Tras su primera experiencia frustrante con la siembra directa, los investigadores y sus estudiantes aprendieron a cultivar semillas de plantas nativas en dos viveros del Altiplano con fines de trasplantarlos.

Se ha perdido tanta vegetación nativa que no se puede reforestarla toda, así que los investigadores trabajaron con los agricultores de las comunidades locales para experimentar con barreras vivas. Se trataba de dos o tres líneas de t’ula trasplantadas desde los viveros para crear barreras vivas de tres metros de ancho. Las barreras vivas podían plantarse como bordes alrededor de las parcelas, o como franjas dentro de los campos grandes, con una separación de 30 a 45 metros. Esto ayudó a frenar la erosión del suelo causada por el viento, para que los agricultores pudieran cultivar quinua (que aún se siembra, pero en menor cantidad, para comer en casa y para el mercado nacional, tras el fin del boom de las exportaciones). El cultivo de arbustos nativos como barreras vivas también incentivó a los agricultores a cuidar estas plantas nativas.

En 2022, se han plantado casi 8.000 metros de barreras vivas de t’ula, que se protegen por los agricultores locales. Las plantas más antiguas están madurando, prosperando y formando semilla. Algunos residentes y gobiernos locales han comenzado a llegar a Proinpa, para pedir plantines para plantar, lo que indica un renovado interés en estas plantas nativas.

El siguiente paso en la creación de una nueva agricultura regenerativa era introducir un cultivo de rotación en el sistema de la quinua. Pero en el Altiplano sur no se ha cultivado ningún otro cultivo, aparte de la quinua (y un pariente semi-silvestre, la qañawa). En este clima, era imposible incluso cultivar papas y otras raíces y tubérculos nativos.

Las ONGs sugirieron a los agricultores que rotaran la quinoa con un cultivo de leguminosas, como arvejas o habas, pero estas plantas morían siempre.

Bonifacio y sus colegas se dieron cuenta de que sería necesario tener un nuevo cultivo de leguminosas, pero que tendría que ser una planta silvestre y nativa. Empezaron a experimentar con lupinos nativos. El lupino domesticado es el tarwi, una leguminosa, produce semillas en vainas que permanecen cerradas incluso después de que la planta madure. Cuando los antiguos agricultores domesticaron el lupino, seleccionaron las vainas que permanecían cerradas, para que los granos no se perdieran en el campo. Pero las vainas de las leguminosas silvestres se rompen, esparciendo sus semillas por el suelo.

Se intentaron varios métodos para recuperar la semilla de lupinos silvestre, incluido tamizando la arena. Los investigadores descubrieron que la semilla era viable antes de estar completamente seca, antes de que la vaina reventara. Una vez seca, la semilla entraba en un periodo de dormancia de cuatro años.

En los primeros ensayos con agricultores, los lupinos silvestres han funcionado bien como cultivo intermedio de la quinoa. Las llamas los comen y las leguminosas mejoran el suelo. Cuando se cosecha la quinoa en marzo, abril y mayo, el lupino permanece como cultivo de cobertura, alcanzando la madurez al año siguiente y protegiendo el suelo.

El boom de la quinoa fue una tragedia. Un ecosistema único estuvo a punto de desaparecer en cuatro años. El mercado puede ofrecer incentivos perversos para destruir un paisaje. La investigación con barreras vivas nativas y cultivos de cobertura también va acompañada de estudios de cactus locales y del fitomejoramiento de variedades de quinua bien adaptadas al Altiplano sur. Esto promete ser la base de una agricultura regenerativa, que respete las plantas locales, incluidos los animales que se alimentan de ellas, como la llama domesticada y la vicuña silvestre, y al mismo tiempo proporcionando un medio de vida a la gente nativa.

Lectura adicional

Bonifacio, Alejandro, Genaro Aroni, Milton Villca & Jeffery W. Bentley 2022 Recovering from quinoa: regenerative agricultural research in Bolivia. Journal of Crop Improvement, DOI: 10.1080/15427528.2022.2135155

Previamente en el blog de Agro-Insight

Despertando las semillas

Destruyendo el altiplano sur con quinua

Recuperación lenta

Videos sobre el tema

Barreras vivas para proteger el suelo

La avispa que protege nuestros cultivos

Agradecimiento

El Dr. Alejandro Bonifacio trabaja para la Fundación Proinpa. Este trabajo se hizo con el generoso apoyo del Programa Colaborativo de Investigación de Cultivos (CCRP) de la Fundación McKnight.

Prophets vs. Wizards October 9th, 2022 by

In his 2018 book, The Wizard and the Prophet, Charles Mann portrays two men, contemporaries, whose competing visions of the future shaped the world we live in now. They may have only met once. Both were from humble backgrounds.

William Vogt (1905-1966), whom Mann calls “the prophet,†was raised by a single mother on Long Island, New York, when it was covered in farms and forests, dotted with villages. When Vogt was a young man, this pastoral landscape was swallowed up by systematic suburbanization, one of the first of its kind in the North America. Vogt mourned the loss of the places where he once hiked and delighted in watching birds. He carried a lifelong dread of population growth.

This view was hardened by his formative fieldwork, where he lived on the guano islands off the Pacific Coast of Peru. Sent to find out why the bird populations were crashing, Vogt realized that the cormorant population rose and fell as the El Niño events favored or killed off the coastal fish. Vogt recommended that if the government wanted to restore the island ecology, they should stop mining guano, then kill the cats, rats and chickens, and leave the islands to the birds.

Vogt may no longer be well known, but he encouraged Roger Peterson to write the first ever field guide to birds (still a beloved series of books). For a time Vogt directed Planned Parenthood, and his 1949 bestseller, Road to Survival, influenced writers like Rachel Carson (Silent Spring) and Paul Ehrlich (The Population Bomb). Mann credits Vogt with sparking the modern environmentalism and the anti-population growth movement.

Mann’s “wizard,†Norman Borlaug (1914-2009), grew up on a small farm in Iowa. He got a chance to go to college, barely, in 1932, after his father bought a tractor, freeing up enough labor that the Borlaug children could leave the farm. This left a lifelong impression on Borlaug: technology could give people opportunities.

After studying plant pathology at the University of Minnesota, Borlaug was tapped by the Rockefeller Foundation to go to Mexico to breed wheat that was resistant to rust, a fungal disease. Borlaug identified with Mexican farm families who often went hungry. He decided that it was his job to help them to grow enough to eat. Doggedly crossing and testing thousands of wheat varieties, Borlaug, who had no formal training in plant breeding, managed to produce a variety that was rust-resistant. The plants were also short, which meant that if sown with chemical fertilizer, the large heads of wheat would not cause the plants to topple over. This new wheat had an enormous impact on the world. Indira Gandhi bought 18,000 tons of Borlaug’s wheat. He sent two shiploads of seed from Mexico, allowing India to grow enough wheat to free itself of food aid. Borlaug’s model was also used to develop high-yielding rice in Asia. The International Center for Wheat and Maize Breeding (CIMMYT) in Mexico would grow out of Borlaug’s Rockefeller project.

Borlaug recommended that the new wheat be planted with irrigation, chemical fertilizer and pesticides: a package that became known as the Green Revolution, credited with saving a billion lives. The Green Revolution also led to water logging, soil degradation, chemical-resistant pests and social problems as some landlords dismissed tenant farmers after bumper harvests tempted land owners to farm all of their own land with machinery rather than with low-paid labor.

Vogt visited Borlaug once in the early days, in Chapingo, Mexico. As the prophet he was, Vogt realized that growing more wheat would let more people inhabit the Earth, and Vogt tried, unsuccessfully, to have Borlaug’s project shut down. The two men despised each other after that.

Vogt’s life ended in obscurity, and suicide. Borlaug won the Nobel Prize and lived to be an old man. He once visited the university where I worked in Honduras, and the students who met him found him to be kind and unassuming. Instead of rehearsing his accomplishments, he asked them to tell him where about they were from.

Mann’s book includes a long discussion in the middle, about the world’s main problems. Today a host of wizards and prophets debate how to find enough food, clean water, and renewable energy, while fending off climate change.

Mann avoids taking sides and refuses to try to blend prophesy and wizardry. That is for us, the readers, to do. In recent decades, the world has made real progress solving problems. Hunger and poverty are in retreat. Formal, legal slavery has ended. Human rights are more widely recognized. Like Mann, I also ask: can’t we find a way to feed, house and clothe everyone without destroying the world we live in?

Further reading

Mann, Charles C. 2018 The Wizard and the Prophet: Two Remarkable Scientists and their Dueling Visions to Shape Tomorrow’s World. New York: Vintage books. 616 pp.

Related Agro-Insight blogs

Silent Spring, better living through biology

 

Creativity of the commons August 28th, 2022 by

Vea la versión en español a continuación

Farmers and scientists should be able to work together to create practical, new technologies, but it’s easier said than done. So, I was pleased to see a clear example recently, in Peru.

Peruvian agronomists, Edgar Olivera and Raúl Ccanto, have been working in the municipality of Quilcas near Huancayo since about 2002. The farmers were poor, and the land couldn’t sustain them. Farmers would grow potatoes for a year, followed by some other crop like ulluco, or broad beans or oats. Then the soil fertility would be exhausted and the land would remain fallow for several years, producing a poor-quality fodder that left the cows hungry.

I was lucky enough to go to Quilcas in 2013, nearly ten years ago, when two soil scientists, Steve Vanek and Steve Fonte teamed up with Edgar and Raúl and the farmers of Quilcas.

Raúl and Edgar convened a community workshop and (thanks to the goodwill that they had established with the farmers) many people from Quilcas attended. Steve and Steve proposed that after farmers harvested their second crop, instead of leaving it fallow, they could plant a mix of pastures: grasses and legumes—annuals and perennials. In the experiment, some of the plots would be fertilized and others would not be. The farmers responded enthusiastically, and they agreed to lend some of their land and their time to the experiments.

Edgar and Raúl continued to work in Quilcas and other highland communities. The Steves kept making visits from the universities where they taught in the United States. They often brought graduate students. Meanwhile, after years of hard work and some government support, the community managed to dig an irrigation canal into Quilcas, which was finished in 2018.

I never went back to Quilcas until this year (2022) and I was pleasantly surprised. Many of the farmers in the village of Collpar (part of Quilcas) were using some version of the new fodder mix. After harvesting their potatoes, they plant a second crop. Then they plant a mix of several kinds of grasses (like oats and rye grass) and legumes (such as vetch and alfalfa). The oats and the vetch are annuals, while the rye grass and the alfalfa are perennials. The oats and the vetch are harvested first, while the rye grass and the alfalfa live for another three to five years. A little irrigation helps the plants to thrive, as does a bit of guinea pig manure or some wood ash from the kitchen. The fodder is cut and taken to the animals, which do not graze on the small plots.

Local farmer Marcelo Tiza showed us the rich, dark soil beneath the fodder crops, full of earthworms and other life. Another farmer, Ricardina Rodríguez explained that the fodder allowed the women to have healthier cows and to start a cheese-making group. Most of the farmers are now raising guinea pigs and dairy cows commercially.

The success with animals is built on the community’s efforts with irrigation and new fodder systems. Along the way the farmers have adapted new ideas to their own context, selecting the fodder species that work for them, and figuring out how to water, and fertilize the fodder crop, and how to turn it into products they can eat or sell. When farmers and scientists collaborate well, they each contribute ideas. In this case, the agricultural scientists proposed new fodder species, and a new style of mixing them, but they wanted to plant the fodder in large, unirrigated lands at the start of a long period of several years’ fallow. The farmers added the idea of irrigating the new crops, fertilizing them, and planting them in small plots. In other words, the collaboration yielded an idea that neither party may have thought of on their own.

“Our original concept was to address the outlying, degradation-prone areas as well,†says Steve Vanek. Unfortunately, the fodder plants that thrived near the farmsteads didn’t do well in the distant plots. “Farmers are also sensitive to the idea that for larger, outlying plots erosion and degradation are a real risk. They understood that species such as orchardgrass can complement the slower establishment of native grasses and legumes to better protect the soils.†This is a topic that researchers and farmers hope to tackle in future.

Fodder plants perform well in mixed communities, protecting and supporting each other. In the same way, a mix of farmers, agronomists, and soil scientists can stimulate each other with new ideas, eventually reaching solutions that none of the groups would have thought of alone. Given with slow rhythms of crops and livestock, this meaningful collaboration may take several years to pay off, but it is worth it.

Watch the video

Improved pasture for fertile soil

Further reading

Meza, Katherin, Steven J. Vanek, Yulissa Sueldo, Edgar Olivera, Raúl Ccanto, María Scurrah, and Steven J. Fonte 2022 Grass-legume mixtures show potential to increase above-and belowground biomass production for Andean forage-based fallows. Agronomy 12(1): 142.

Meza, Katherin, Steven J. Vanek, Raúl Ccanto Retamozo, María Scurrah, Edgar Olivera Hurtado, and Steven J. Fonte 2017 Importancia de los servicios ecosistémicos en un paisaje andino de la Sierra Central del Perú. Revista LEISA 33(1): 15.

Vanek, Steven J., Katherin Meza, Raul Ccanto, Edgar Olivera, Maria Scurrah, and Steven J. Fonte 2020 Participatory design of improved forage/fallow options across soil gradients with farmers of the Central Peruvian Andes. Agriculture, Ecosystems & Environment 300: 106933.

Related Agro-Insight blogs

Rotational grazing

The committee of the commons

Moveable pasture

A better way to make holes

Scientific names

Oat (Avena sativa), ryegrass (Lolium multiflorum), vetch (Vicia dasycarpa), alfalfa (Medicago sativa), orchard grass (Dactylis glomerata),

Acknowledgements

The visit to Peru to film various farmer-to-farmer training videos, including this one, was made possible with the kind support of the Collaborative Crop Research Program (CCRP) of the McKnight Foundation. Thanks to Edgar Olivera, Raúl Ccanto, Jhon Huaraca and colleagues of the Grupo Yanapai for introducing us to Quilcas and for sharing their knowledge with us. Steve Vanek and Paul Van Mele read and made valuable comments on an earlier version of this story.

CREATIVIDAD COLECTIVA

Jeff Bentley, 21 de agosto del 2022

Lógicamente, los agricultores y los científicos deberían poder trabajar juntos para crear nuevas tecnologías prácticas, pero es más fácil decirlo que hacerlo. Por eso, me encantó ver un claro ejemplo recientemente, en el Perú.

Los agrónomos peruanos Edgar Olivera y Raúl Ccanto trabajan en el municipio de Quilcas, cerca de Huancayo, desde el 2002. Los agricultores eran pobres y la tierra no podía mantenerlos. Los agricultores cultivaban papas un año, seguidas de otro cultivo como el ulluco, las habas o la avena. Luego, la fertilidad del suelo se agotaba y dejaban la tierra en descanso por varios años, produciendo un forraje de mala calidad que dejaba a las vacas flacas.

Tuve la suerte de ir a Quilcas en el 2013, hace casi diez años, cuando dos científicos de suelo, Steve Vanek y Steve Fonte, se unieron con Edgar y Raúl y los agricultores de Quilcas.

Raúl y Edgar convocaron un taller comunitario y (gracias a la buena voluntad que habían establecido con la gente local) y asistieron muchas personas de Quilcas. Steve y Steve propusieron que después de que se recogiera la segunda cosecha, en lugar de dejarla en descanso, plantaran una mezcla de pastos: gramíneas y leguminosas, anuales y perennes. En el experimento, algunas de las parcelas se abonarían y otras no. Los agricultores respondieron con entusiasmo y aceptaron prestar parte de sus tierras y su tiempo para los experimentos.

Edgar y Raúl siguieron trabajando en Quilcas y otras comunidades de la Sierra. Los Steve siguieron visitando desde las universidades donde enseñaban en los Estados Unidos. A menudo traían estudiantes de posgrado. Mientras tanto, tras años de duro trabajo y algo de apoyo gubernamental, la comunidad logró cavar un canal de riego en Quilcas, que se terminó en el 2018.

Yo no volví a Quilcas hasta este año (2022) y era una sorpresa agradable. Muchas de las familias de la comunidad de Collpar (que forma parte de Quilcas) usaban alguna versión de la nueva mezcla forrajera. Después de cosechar las papas, sembraban otro cultivo. Luego sembraban una mezcla de varios tipos de gramíneas (como la avena y el ray gras) y leguminosas (como la vicia y la alfalfa). La avena y la vicia son anuales, mientras que el ray gras y la alfalfa son perennes. La avena y la vicia se cosechan primero, mientras que el ray gras y la alfalfa viven de tres a cinco años más. Un poco de riego ayuda a las plantas a prosperar, así como un poco de estiércol de cuy o algo de ceniza de leña de la cocina. El forraje se corta y se lleva a los animales, que no pastorean en las pequeñas parcelas.

El agricultor local Marcelo Tiza nos mostró la rica tierra negra que hay donde los cultivos de forraje, llena de lombrices y otros seres vivos. Otra agricultora, Ricardina Rodríguez, explicó que el forraje permitió a las mujeres tener vacas más sanas y crear un grupo que hace queso. La mayoría de los agricultores se dedican ahora a la cría comercial de cuyes y vacas lecheras.

El éxito con los animales se basa en los esfuerzos de la comunidad con el riego y los nuevos sistemas de forraje. Ajustando la carga sobre el camino, los agricultores han adaptado las nuevas ideas a su propio contexto, seleccionando las especies de forraje que les funcionan, y averiguando cómo regar y fertilizar el cultivo de forraje, y cómo convertirlo en productos que puedan comer o vender. Cuando los agricultores y los científicos colaboran bien, cada uno aporta ideas. En este caso, los científicos agrícolas propusieron nuevas especies forrajeras y un nuevo estilo de mezclarlas, pero querían sembrar el forraje en grandes tierras de secano al comienzo de un largo período de varios años de descanso. Los agricultores añadieron la idea de regar los nuevos cultivos, abonarlos y sembrarlos en parcelas pequeñas. En otras palabras, la colaboración dio lugar a una idea que a ninguna de las partes se le habría ocurrido por sí sola.

“Nuestro concepto original era abordar también las zonas lejanas, sujetas a la degradación”, dice Steve Vanek. Por desgracia, las plantas forrajeras que prosperaban cerca de las viviendas no funcionaban bien en las parcelas lejanas. “Los agricultores también son sensibles a la idea de que para las parcelas más grandes y alejadas la erosión y la degradación son un riesgo real. Comprendieron que especies como la dactilis pueden complementar el establecimiento más lento de las gramíneas y leguminosas para proteger mejor los suelos.” Este es un tema que investigadores y agricultores esperan abordar en el futuro.

Las plantas forrajeras se comportan bien en comunidades mixtas, protegiéndose y apoyándose mutuamente. Del mismo modo, una mezcla de agricultores, agrónomos y científicos de suelo puede estimularse mutuamente con nuevas ideas, llegando finalmente a soluciones que ninguno de los grupos habría pensado por sí solo. Dado el lento ritmo de los cultivos y el ganado, esta colaboración puede tardar varios años en dar sus frutos, pero vale la pena.

Ver el video

Suelos fértiles con pastos mejorados

Lectura adicional

Meza, Katherin, Steven J. Vanek, Yulissa Sueldo, Edgar Olivera, Raúl Ccanto, María Scurrah, y Steven J. Fonte 2022 Grass-legume mixtures show potential to increase above-and belowground biomass production for Andean forage-based fallows. Agronomy 12(1): 142.

Meza, Katherin, Steven J. Vanek, Raúl Ccanto Retamozo, María Scurrah, Edgar Olivera Hurtado, y Steven J. Fonte 2017 Importancia de los servicios ecosistémicos en un paisaje andino de la Sierra Central del Perú. Revista LEISA 33(1): 15.

Vanek, Steven J., Katherin Meza, Raul Ccanto, Edgar Olivera, Maria Scurrah, y Steven J. Fonte 2020 Participatory design of improved forage/fallow options across soil gradients with farmers of the Central Peruvian Andes. Agriculture, Ecosystems & Environment 300: 106933.

Previamente en el blog de Agro-Insight

Rotational grazing

Comité campesino

Pasto movible

Mejores agujeros para sembrar pasto

Nombres científicos

Avena (Avena sativa), ray grass (Lolium multiflorum), vicia (Vicia dasycarpa), alfalfa (Medicago sativa), dactilis (Dactylis glomerata)

Agradecimiento

Nuestra visita al Perú para filmar varios videos, incluso este, fue posible gracias al generoso apoyo del Programa Colaborativo de Investigación de Cultivos (CCRP) de la Fundación McKnight. Gracias a Edgar Olivera, Raúl Ccanto, Jhon Huaraca y colegas del Grupo Yanapai por presentarnos a Quilcas y por compartir su conocimiento con nosotros. Steve Vanek y Paul Van Mele hicieron comentarios valiosos sobre una versión previa de este relato.

Killing the soil with chemicals (and bringing it back to life) August 14th, 2022 by

Vea la versión en español a continuación

Paul, and Marcella and I were filming recently in Quilcas, a village in Junín of the central Andes of Peru. A farmer and a former president of the community, Marcelo Tiza was spending the day with us. As we were admiring the mountain peaks and the green hillsides surrounding the community, we noticed that the steep slopes were divided up into a faint green checker board pattern, like a patchwork of abandoned fields. Then don Marcelo remarked offhand that all of that land had once been farmed, but that the soil had been destroyed by chemical fertilizer.

According to the community, these hillsides had always been cultivated, in a long rotation called “turns,†where they divided their high lands into several large fields, each with the same harvest potential. They would open one field the first year and divide it into family parcels of land to plant potatoes. The next year, they would open another big field for potatoes, and the first one, where they had already harvested potatoes, would be planted in other Andean tubers, or broad beans, or some other crop. Then the land would rest for five years, until the land became fertile again and people would plant potatoes again.

Then in the 1970s, the people of Quilcas began to use chemical fertilizer to boost their potato yields. Some people could afford chemical fertilizer, and those who couldn’t would apply sheep manure to their land. But after just 25 years of using chemical fertilizer, the communal land had been ruined. By 1999, community members noticed that even after they let the land rest for five years, it no longer recovered its fertility. It was missing its thick cover of vegetation and plants like trébol de carretilla that local people recognized as the signs of healthy land, ready to plant.

So the people of Quilcas moved their communal land higher, from about 3,800 meters above sea level to nearly 4,000. Having learned their lesson, the people prohibited the use of any chemical fertilizer or pesticides on these lands. The community regulations prohibited the use of chemical fertilizer or other chemicals in the communal fields, and people who broke these rules could be fined or even lose their rights to the lands.

Since 2000, the community of Quilcas (in collaboration with the NGO Yanapai) has also learned to use a long rotation of fodder crops (grasses and legumes). For several years, they plant potato in rotation with other tubers, as well as with barley and oats. Then the land is rested for several years, by planting a cover of fodder crops, which enrich the soil.  They have perfected the system in the individual lands near their homes, in the lower parts of the community (at about 3,500 meters above sea level).  And now they are experimenting with planting fodder above the villages, in the soil spoiled by chemicals. The first yields have been good, and people are encouraged. Ecological farming may be able to restore soils that have been ruined by the intense use of chemicals.

Paul and I have devoted much of this blog to the power of individual farmers to perform creative experiments. But farmer experiments can be more powerful than we have given them credit for. This story highlights the ability of communities to notice change that unfolded over several decades, at the level of whole landscapes, and to proactively experiment with ways of restoring the soil their lives depend on.

Related Agro-Insight blog stories

200 guinea pigs

Silent Spring, Better living through biology

A revolution for our soil

Scientific name

Trébol de carretilla is Medicago polymorpha or Medicago hispida (English “burr medicâ€)

Acknowledgements

The visit to Peru to film various farmer-to-farmer training videos, including this one, was made possible with the kind support of the Collaborative Crop Research Program (CCRP) of the McKnight Foundation. Thanks to Edgar Olivera, Raúl Ccanto, Jhon Huaraca and colleagues of the Grupo Yanapai for introducing us to Quilcas and for sharing their knowledge with us. Edgar Olivera and Paul Van Mele read and made valuable comments on an earlier version of this story.

MATAR EL SUELO CON QUÃMICOS (Y DEVOLVERLE LA VIDA)

Jeff Bentley, 14 de agosto del 2022

Hace poco, Paul, Marcella y yo filmábamos un video en Quilcas, en el departamento de Junín, en los Andes centrales del Perú. Un agricultor y antiguo presidente de la comunidad, Marcelo Tiza, estaba pasando el día con nosotros. Mientras admirábamos las cumbres de los cerros y las laderas que rodeaban la comunidad, nos dimos cuenta de que las inclinadas faldas del cerro estaban divididas en un borroso tablero de ajedrez verde: un mosaico de campos abandonados. Entonces don Marcelo explicó que en el pasado toda esa tierra sí había sido cultivada, pero que el suelo había sido destruido por los fertilizantes químicos.

Según la comunidad, esas laderas siempre se habían cultivado, en una especie de rotación por “turnos†donde dividían sus tierras altas en varios sectores, cada uno con casi la misma capacidad productiva. Abrían un sector el primer año y lo dividían en parcelas familiares para sembrar papa. El siguiente año, abrían otro terreno grande para papas, y en el primer campo, donde habían cosechado las papas, se sembraba otros tubérculos andinos, o habas, u otro cultivo. Luego la tierra descansaba por cinco años, hasta volverse fértil y se podía sembrar papas de nuevo.

Luego, en la década de 1970, la gente de Quilcas empezó a usar fertilizantes químicos para aumentar el rendimiento de las papas. Algunas personas podían darse el lujo de aplicar esos químicos, y las que no podían hacerlo, ponían guano de oveja a sus tierras. Pero tras sólo 25 años de uso de fertilizantes químicos, la tierra comunal se había arruinado. En 1999, los miembros de la comunidad se dieron cuenta de que, incluso después de dejar descansar la tierra durante cinco años, ya no recuperaba su fertilidad. Le faltaba su espesa capa de vegetación y plantas como el trébol de carretilla, que la población local reconocía como signo de una tierra sana, lista para sembrar.

Así que la gente de Quilcas trasladó sus campos comunales más arriba, de unos 3.800 metros sobre el nivel del mar a casi 4.000. Habiendo aprendido su lección, la gente prohibió el uso de cualquier fertilizante químico o plaguicida en estas tierras. Los estatutos de la comunidad prohíben el uso de fertilizantes y agroquímicos en tierras comunales, caso contrario el comunero será sancionado, hasta con la separación de la comunidad.

Desde el año 2000, la comunidad de Quilcas (en colaboración con la ONG Yanapai) también ha aprendido a usar una larga rotación de cultivos forrajeros (gramíneas y leguminosas). Durante varios años, siembran la papa en rotación con otros tubérculos, y cebada y avena. Luego la tierra descansa por varios años, con una cobertura de pasto cultivado, lo cual enriquece el suelo.  Han perfeccionado el sistema en las tierras individuales cercanas a sus casas, en las partes bajas de la comunidad (a unos 3.500 metros sobre el nivel del mar).  Y ahora están experimentando con la siembra de forraje en tierras más altas, hasta en los terrenos arruinados por los productos químicos. Los primeros rendimientos han sido buenos, y la gente está animada. La agricultura ecológica podría restaurar los suelos destruidos por el uso intensivo de químicos.

Paul y yo hemos dedicado gran parte de este blog al reconocer a los agricultores individuales y sus experimentos creativos. Pero los experimentos de los agricultores pueden ser más poderosos de lo que les hemos atribuido. Esta historia pone de relieve la capacidad de las comunidades para darse cuenta del cambio que se ha producido a lo largo de varias décadas, a nivel de paisajes enteros, y para experimentar proactivamente con formas de restaurar el suelo del que dependen sus vidas.

Previamente en el blog de Agro-Insight

200 cuyes

Silent Spring, Better living through biology

Una revolución para nuestro suelo

Nombre científico

Trébol de carretilla es Medicago polymorpha o Medicago hispida

Agradecimiento

Nuestra visita al Perú para filmar varios videos, incluso este, fue posible gracias al generoso apoyo del Programa Colaborativo de Investigación de Cultivos (CCRP) de la Fundación McKnight. Gracias a Edgar Olivera, Raúl Ccanto, Jhon Huaraca y colegas del Grupo Yanapai por presentarnos a Quilcas y por compartir su conocimiento con nosotros. Edgar Olivera y Paul Van Mele hicieron comentarios valiosos sobre una versión previa de este relato.

The nitrogen crisis July 3rd, 2022 by

Nederlandse versie hieronder

The European Union, along with most countries across the world, has agreed to reduce the emission of greenhouse gases to curb the negative effects of climate change, which are already apparent. Under the Green Deal, the EU aims to be climate neutral by 2050. Besides investments in more sustainable energy production and consumption (transport, housing …), further improvements are also needed in the food sector. But there is little consensus on how farmers should be supported.

Looking at the demographic trends in rural Europe, the proposed solutions will need to consider farm size. From 2005 to 2013, across Europe the number of farms with less than 50 hectares of land steadily decreased, while those between 50 and 100 hectares remained more or less stable. Those over 100 hectares slightly increased. Yet more than half of the farming population in Europe is older than 55 years (EuroStat, 2021). Meanwhile, the younger farmers have invested in labour-saving equipment, for example to work the larger holdings, acquiring high debts along the way. Further investment in climate mitigation will require proper support so that when the older farmers retire, the next generation will be able cope with the ever-increasing pressure of bank loans.

The war in Ukraine has triggered a sharp rise in the price of artificial fertilizers, making chemical-based farming less profitable. It is estimated that globally only one third of the applied nitrogen from chemical fertilizers is used by crops. Combined with the mounting pressure on farmers to help mitigate climate change by reducing carbon and nitrogen emissions, farmers are keen to optimise the use of animal manure.

While animal and human manure has been used to keep soils fertile for thousands of years, something has gone wrong in the recent past.

In a German documentary on the Aztecs, called Children of the Sun, ethnologist Antje Gunsenheimer describes some ancient human manure management. The central market in Tenochtitlán, the Aztec capital, had public toilets where urine and faeces were collected separately in clay pots. Dung traders sold the composted dung as fertilizer, while the urine was used for dying fabric and leather tanning.

From the earliest days of farming in Europe, animals were kept on deep bedding of straw. But nowadays most animals in Europe are kept on a metal grid, and the mix of urine and dung is collected in large, underground reservoirs. When excrement and urine from cows or pigs mix, a lot of methane gas (CH4) and ammonia (NH4) is produced. The old practices of using straw as bedding, as well as innovative designs to separate the dung form the urine, is getting some renewed attention in livestock farming, because when separated, greenhouse gas emissions can be reduced by up to 75%.

Bedding with crop residues such as wheat straw may provide substantial benefits.

Engineers in the Netherlands, the USA, Israel and various other countries are researching how best to adjust modern livestock sheds. Some promising examples include free walk housing systems that operate with composting bedding material or artificial permeable floors as lying and walking areas. Other sustainable techniques that are being explored include the CowToilet, which separates faeces and urine. As converting housing systems may be costly and therefore only adopted slowly by farmers, it is important to also experiment with better ways of applying liquid manure.

In modern livestock systems, urine and manure are mixed with the water used to wash the pens. Getting rid of this slurry, or liquid manure, has become a main environmental concern. When liquid manure is applied to the soil, much of the nitrogen evaporates as nitrous oxide or N2O, a greenhouse gas 300 times more powerful than carbon dioxide. Another fraction is converted to nitrates (NO3), which seep through the soil and pollute the ground water. While manure used to be a crucial resource, it has now become a waste product and an expense for farmers.

Making better use of animal waste will be crucial for the future of our food. One key factor is the lack of soil organic matter and good microbes, that can help capture nitrogen and release this more slowly to benefit crops.

Solutions that are financially feasible for farmers will require the best of ideas, with inputs from farmers, soil scientists, microbiologists, ecologists, chemical and mechanical engineers, as well as social scientists.

Practices that help to build up soil carbon will be crucial to reduce the environmental impact of animal manure and fertilizers. Ploughing is known to have a detrimental effect on soil organic matter, as it induces oxidation of soil carbon. Reduced tillage or zero tillage for crop cultivation, and regenerative farming to make animal farming more sustainable, has been promoted and used in the USA and other parts of the world, and could be explored more intensively in Europe.

Also, there will be a need to revive soil micro-organisms, as these have been seriously affected by the use of agrochemicals and the reduced availability of soil organic matter. The expensive machines that are currently used by service providers to spread or inject liquid manure in farmers’ fields could equally be used to inject solutions with good micro-organisms that will help to capture nitrogen to then release it to crops, and build up a healthy soil.

Human creativity will be required to help come up with solutions that are economically feasible for farmers in the near future. To make this happen as fast as possible, more investments are required in research that truly addresses the fundamentals of the problems. Still, far too much public money is invested in research on new crop varieties, livestock feed, and the application of agrochemicals, all of which are to the benefit of large corporations.

Photo credit: The photo on the straw bedding is by Herbert Wiggerman.

More reading

Galama, P. J., Ouweltjes, W., Endres, M. I., Sprecher, J. R., Leso, L., Kuipers, A., KlopÄiÄ, M. 2020. Symposium review: Future of housing for dairy cattle. Journal of Dairy Science, 103(6), pp. 5759-5772. Available at:  https://www.sciencedirect.com/science/article/pii/S0022030220302988

Related blogs

Capturing carbon in our soils

Reviving soils

Effective micro-organisms

A revolution for our soil

Repurposing farm machinery

Related videos

Good microbes for plants and soil

Organic biofertilizer in liquid and solid form

Coir pith

Mulch for a better soil and crop

Vermiwash: an organic tonic for crops

Inspiring platforms

Access Agriculture: hosts over 220 training videos in over 90 languages on a diversity of crops and livestock, sustainable soil and water management, basic food processing, etc. Each video describes underlying principles, as such encouraging people to experiment with new ideas.

EcoAgtube: a social media video platform where anyone from across the globe can upload their own videos related to natural farming and circular economy.

 

De stikstofcrisis

De Europese Unie heeft, samen met de meeste landen in de wereld, afgesproken de uitstoot van broeikasgassen te verminderen om de negatieve gevolgen van de klimaatverandering, die nu al merkbaar zijn, te beperken. In het kader van de Green Deal streeft de EU ernaar tegen 2050 klimaatneutraal te zijn. Naast investeringen in duurzamere energieproductie en -consumptie (vervoer, huisvesting …) zijn ook verdere verbeteringen nodig in de voedselsector. Maar er is weinig consensus over hoe landbouwers moeten worden ondersteund.

Als we kijken naar de demografische tendensen op het Europese platteland, moet bij de voorgestelde oplossingen rekening worden gehouden met de omvang van de landbouwbedrijven. Tussen 2005 en 2013 is in heel Europa het aantal landbouwbedrijven met minder dan 50 hectare gestaag gedaald, terwijl het aantal bedrijven tussen 50 en 100 hectare min of meer stabiel is gebleven. Het aantal bedrijven met meer dan 100 hectare is licht gestegen. Toch is meer dan de helft van de landbouwbevolking in Europa ouder dan 55 jaar (EuroStat, 2021). Ondertussen hebben de jongere boeren geïnvesteerd in arbeidsbesparende apparatuur, bijvoorbeeld om de grotere bedrijven te bewerken, waarbij ze onderweg hoge schulden hebben gemaakt. Voor verdere investeringen in klimaatmitigatie is goede ondersteuning nodig, zodat wanneer de oudere boeren met pensioen gaan, de volgende generatie het hoofd kan bieden aan de almaar toenemende druk van bankleningen.

De oorlog in Oekraïne heeft geleid tot een sterke stijging van de prijs van kunstmest, waardoor landbouw op basis van chemische stoffen minder winstgevend is geworden. Bovendien wordt naar schatting wereldwijd slechts een derde van de stikstof uit kunstmest door de gewassen gebruikt. In combinatie met de toenemende druk op landbouwers om de klimaatverandering te helpen beperken door de uitstoot van koolstof en stikstof te verminderen, zijn landbouwers erop gebrand het gebruik van dierlijke mest te optimaliseren.

Hoewel dierlijke en menselijke mest al duizenden jaren wordt gebruikt om de bodem vruchtbaar te houden, is er in het recente verleden iets misgegaan.

In een Duitse documentaire over de Azteken, genaamd Children of the Sun, beschrijft etnologe Antje Gunsenheimer hoe men in de oudheid met menselijke mest omging. De centrale markt in Tenochtitlán, de Azteekse hoofdstad, had openbare toiletten waar urine en uitwerpselen gescheiden werden opgevangen in kleipotten. Mesthandelaren verkochten de gecomposteerde mest als meststof, terwijl de urine werd gebruikt voor het verven van stoffen en het looien van leer.

Vanaf de begindagen van de landbouw in Europa werden dieren gehouden op een diep strobed. Maar tegenwoordig worden de meeste dieren in Europa op een metalen rooster gehouden, en wordt het mengsel van urine en mest opgevangen in grote, ondergrondse reservoirs. Wanneer uitwerpselen en urine van koeien of varkens zich vermengen, ontstaat er veel methaangas (CH4) en ammoniak (NH4).

De oude praktijk van het gebruik van stro als strooisel en innovatieve ontwerpen om de mest van de urine te scheiden, krijgt hernieuwde aandacht in de veehouderij, omdat bij scheiding de uitstoot van broeikasgassen tot 75% kan worden verminderd.

Bedding with crop residues such as wheat straw may provide substantial benefits.

Ingenieurs in Nederland, de VS, Israël en diverse andere landen onderzoeken hoe moderne stallen het best kunnen worden aangepast. Enkele veelbelovende voorbeelden zijn huisvestingssystemen met vrije uitloop die werken met composterend strooiselmateriaal of kunstmatige doorlaatbare vloeren als lig- en loopruimte. Andere duurzame technieken die worden onderzocht zijn onder meer het CowToilet, dat uitwerpselen en urine scheidt. Aangezien het ombouwen van stalsystemen kostbaar kan zijn en daarom slechts langzaam door boeren wordt overgenomen, is het belangrijk om ook te experimenteren met betere manieren om vloeibare mest toe te dienen.

In moderne veeteeltsystemen worden urine en mest vermengd met het water dat wordt gebruikt om de boxen te wassen. Het wegwerken van deze gier, of vloeibare mest, is een belangrijk milieuprobleem geworden. Wanneer vloeibare mest op de bodem wordt gebracht, verdampt een groot deel van de stikstof in de vorm van stikstofoxide of N2O, een broeikasgas dat 300 keer krachtiger is dan koolstofdioxide. Een ander deel wordt omgezet in nitraten (NO3), die door de bodem sijpelen en het grondwater verontreinigen. Terwijl mest vroeger een cruciale hulpbron was, is het nu een afvalproduct en een kostenpost voor de landbouwers geworden.

Een beter gebruik van dierlijk afval zal van cruciaal belang zijn voor de toekomst van ons voedsel. Een belangrijke factor is het gebrek aan organisch materiaal en goede microben in de bodem, die kunnen helpen stikstof vast te leggen en langzamer vrij te geven ten voordele van de gewassen.

Om oplossingen te vinden die voor de landbouwers financieel haalbaar zijn, zullen de beste ideeën moeten worden uitgewisseld, met bijdragen van landbouwers, bodemwetenschappers, microbiologen, ecologen, chemische en mechanische ingenieurs en sociale wetenschappers.

Praktijken die helpen bij de opbouw van koolstof in de bodem zullen van cruciaal belang zijn om de milieueffecten van dierlijke mest en meststoffen te verminderen. Het is bekend dat ploegen een nadelig effect heeft op het organisch materiaal in de bodem, aangezien het de oxidatie van koolstof in de bodem induceert. Verminderde grondbewerking of nulgrondbewerking voor de teelt van gewassen, en regeneratieve landbouw om de veehouderij duurzamer te maken, worden in de VS en andere delen van de wereld gestimuleerd en toegepast, en zouden in Europa intensiever kunnen worden onderzocht.

Ook zullen de micro-organismen in de bodem nieuw leven moeten worden ingeblazen, aangezien deze ernstig zijn aangetast door het gebruik van landbouwchemicaliën en de verminderde beschikbaarheid van organisch materiaal in de bodem. De dure machines die momenteel door dienstverleners worden gebruikt om vloeibare mest over de akkers van de landbouwers uit te strooien of te injecteren, zouden ook kunnen worden gebruikt om oplossingen met goede micro-organismen te injecteren die stikstof helpen vastleggen om het vervolgens aan de gewassen af te geven, en een gezonde bodem op te bouwen.

Menselijke creativiteit zal nodig zijn om in de nabije toekomst oplossingen te vinden die economisch haalbaar zijn voor landbouwers. Om dit zo snel mogelijk te laten gebeuren, zijn meer investeringen nodig in onderzoek dat de fundamentele problemen echt aanpakt. Nog steeds wordt veel te veel overheidsgeld geïnvesteerd in onderzoek naar nieuwe gewasvariëteiten, veevoer en de toepassing van landbouwchemicaliën, die allemaal in het voordeel zijn van grote bedrijven.

Design by Olean webdesign