WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Peasants, not princes: the potato finds a home in Europe April 18th, 2021 by

The French philosopher Antoine Parmentier (1730-1815) introduced the potato into his country by having it planted with great fanfare in the king’s gardens. Guards were posted to protect the new crop, ostensibly to prevent thefts, but really to draw attention to it. When the guards were withdrawn overnight from the now mature crop, curious farmers snuck in and dug up the potatoes to plant in their own fields, just as the clever Parmentier had intended.

Some years ago I told this story from the podium of the National Potato Congress in Bolivia. My audience of Andean potato experts loved the tale, which is one reason why I must retract it now, for it is simply a bit of fake history, penned by Parmentier’s friend and biographer, Julien-Joseph Virey.

Perhaps I should have known better, but in the potato story I learned in grad school, European peasants resisted the tuber brought back by Spanish sailors fresh from the conquest of Peru in the 1530s. Europeans were used to eating cereals, and the potato lived underground, like the devil, or so went the story.

In a recent book, British historian Rebecca Earle sets the potato record straight. She points out that European peasants did eat root crops, like carrots and turnips.

Earle also shows that European peasants embraced the potato from the start, often growing it discretely in a home garden, for once a new crop was widely grown and sold, it acquired a market value and could be taxed and tithed.

According to court records from Cornwall in 1768, a clergyman sued one of his flock because she was growing potatoes without paying him a tithe. Witnesses testified that the potato had already been grown for many generations in Cornwall. The potato was also mentioned in Marx Rumpolt’s cookbook published in Frankfurt in 1681. During the Nine Years War (1688-1697) so many potatoes were grown in Flanders that soldiers were able to survive by pilfering potatoes from peasants’ fields.

The potato was widely grown all over Europe (in France, too) before Parmentier was born. Then as now, smallholder farmers were eager to experiment with new crops. Peasants spread the potato across Europe long before the nobles paid it much attention. Earle also writes that potatoes were being grown commercially in the Canary Islands by the 1570s, and shipped to France and the Netherlands.

In Earle’s analysis, after widespread hunger in the mid-1700s fueled popular revolts, kings began to realize that a well-fed, healthy population would be more productive. Rulers finally saw that it was in their own self-interest for the state to assume some responsibility to ensure that their subjects’ had enough food to eat.

Potatoes yielded as much as three times more food per hectare than rye and other grain crops. Monarchs, like King Louis XIV (patron of Parmentier) belatedly began to understand the advantages of potatoes and entered the history books as a promotor of the new crop. Other historical inaccuracies arose. Frederick the Great is erroneously portrayed as introducing Germans to the potato.

The myth that the conservative peasants were afraid to grow and eat potatoes, or that the potato was spread across Europe by emperors and philosophers has proven a pervasive piece of fake history. These stories burnished the reputations of the elites at the expense of the peasants and home gardeners. Many of the true potato promotors were women, who tended the home gardens, ideal spaces for the experiments that helped the potato become the world’s fourth most widely grown crop, now produced in nearly every country of the world. Yet further proof that smallholder farmers have always been eager to try new crops and other innovations.

Further reading

Earle, Rebecca 2020 Feeding the People: The Politics of the Potato. Cambridge: Cambridge University Press. 306 pp.

Related Agro-Insight blogs

Native potatoes, tasty and vulnerable

My wild Andean shamrock

Stored crops of the Inka

CAMPESINOS, NO PRĂŤNCIPES: ACOGIENDO LA PAPA EN EUROPA

Por Jeff Bentley, 18 de abril del 2021

El filósofo francés Antoine Parmentier (1730-1815) introdujo la papa en su país haciéndola sembrar a bombo y platillo en los jardines del rey. Se colocaron guardias para proteger el nuevo cultivo, aparentemente para evitar robos, pero en realidad para llamar la atención. Cuando los guardias se retiraron de la noche a la mañana del cultivo ya maduro, los campesinos curiosos se colaron y desenterraron las papas para sembrarlas en sus propios huertos, tal y como pretendía el astuto Parmentier.

Hace algunos años conté esta historia desde el podio del Congreso Nacional de la Papa en Bolivia. A mi público de expertos andinos en la papa le encantó el relato, lo cual es una de las razones por las que debo retractarme ahora, ya que es nada más que una historia falsa, escrita por el amigo y biógrafo de Parmentier, Julien-Joseph Virey.

Tal vez debería haberlo sabido, pero en la historia de la papa que aprendí en la universidad, los campesinos europeos se resistieron al tubérculo traído por los marineros españoles recién llegados de la conquista de Perú en la década de 1530. Los europeos estaban acostumbrados a comer cereales, y la papa vivía bajo tierra, como el diablo, o al menos así me contaban.

En un libro reciente, la historiadora británica Rebecca Earle aclara la historia de la papa. Señala que los campesinos europeos sí comían cultivos de raíces, como zanahorias y nabos.

Earle también demuestra que los campesinos europeos adoptaron la papa desde el principio, a menudo cultivándola discretamente en el jardín de su casa, ya que una vez que un nuevo cultivo se extendía y se vendía, adquiría un valor de mercado y podía ser gravado y diezmado.

Según las actas judiciales de Cornualles de 1768, un clérigo demandó a un miembro de su congregación, porque ella cultivaba papas sin pagarle el diezmo. Los testigos declararon que la papa ya se había cultivado durante muchas generaciones en Cornualles. La papa también se menciona en el libro de cocina de Marx Rumpolt, publicado en Frankfurt en 1681. Durante la Guerra de los Nueve Años (1688-1697) se cultivaron tantas papas en Flandes que los soldados pudieron sobrevivir robando papas de los campos de los campesinos.

La papa se cultivaba ampliamente en toda Europa (también en Francia) antes de que naciera Parmentier. En aquel entonces, igual que hoy en día, a los pequeños agricultores les gusta experimentar con nuevos cultivos. Los campesinos difundieron la papa por toda Europa mucho antes de que los nobles le prestaran mucha atención. Earle también escribe que en la década de 1570 ya se cultivaban papas comercialmente en las Islas Canarias y se enviaban a Francia y los Países Bajos.

Según el análisis de Earle, después de que el hambre generalizada a mediados del siglo XVII alimentara las revueltas populares, los reyes empezaron a darse cuenta de que una población bien alimentada y sana sería más productiva. Los gobernantes finalmente vieron que les interesaba que el Estado asumiera alguna responsabilidad para garantizar que sus súbditos tuvieran suficientes alimentos para comer.

Las papas producían hasta tres veces más alimentos por hectárea que el centeno y otros cultivos de cereales. Los monarcas, como el rey Luis XIV (mecenas de Parmentier), empezaron a comprender tardíamente las ventajas de la papa y entraron en los libros de historia como promotores del nuevo cultivo. Surgieron otras inexactitudes históricas. Federico el Grande es presentado erróneamente como el introductor de la patata para los alemanes.

El mito de que los campesinos conservadores tenían miedo de cultivar y comer papas, o que la papa fue difundida por toda Europa por emperadores y filósofos, ha resultado ser una pieza omnipresente de la historia falsa. Estos relatos han servido para engrosar la reputación de las élites a costa de los campesinos y los jardineros. Muchos de los verdaderos promotores de la papa fueron mujeres, que cuidaban los huertos caseros, espacios ideales para los experimentos que ayudaron a que la papa se convirtiera en el cuarto cultivo más extendido del mundo, que ahora se produce en casi todos los países del globo. Una prueba más de que los pequeños agricultores siempre han estado dispuestos a probar nuevos cultivos y otras innovaciones.

Lectura adicional

Earle, Rebecca 2020 Feeding the People: The Politics of the Potato. Cambridge: Cambridge University Press. 306 pp.

Historias relacionadas del blog de Agro-Insight

Papas nativas, deliciosas y vulnerables

My wild Andean shamrock

Stored crops of the Inka

A Life of Learning from Nature March 14th, 2021 by

When knowledge is blocked from being freely shared, humankind can lose a lot of precious time to make the world a better place. This dawned on me once more after I stumbled upon The Secrets of Water, a video documentary about the life of Viktor Schauberger.

Born in 1885 as the son of an Austrian forest superintendent, Viktor spent many hours in nature observing and reflecting upon what he saw, always trying to keep an open mind. Later, he went on to study forestry and got inspired by poets like Goethe who instilled in him the importance of making full use of our senses to better understand the Ur-phenomenon or the essential quality of what one observes.

Wikipedia describes Schauberger as a naturalist, pseudoscientist, philosopher, inventor and biomimicry experimenter. While pseudoscientist sounds like a dishonest version of a scientist or someone who stands for “fake science”, Schauberger’s insights from nearly a century ago have proven far more influential than what most modern-day scientists could aspire to achieve in a life-time, even with the help of advanced technologies and nanosecond computing devices.

Science  ̶  and technological innovations  ̶  have often ignored local knowledge and even obstructed its dissemination. In 1930, the Austrian Academy of Sciences confirmed the receipt of a sealed envelope entitled “Turbulence”. In it, Schauberger described his theory of interdependency of water temperature and movement. The Academy kept it concealed for 50 years, probably partly because Schauberger continued to criticise their water resource management strategies. His work became the basis for many eco-technological innovations.

For instance, instead of protecting river banks with boulders, Schauberger explained that it makes more sense to control the flow of the river from the inner part of the river, not from the sides. Some unconventional engineers have taken this to heart and have meticulously placed lines of boulders like a funnel inside the river to convert the energy of the river from the sides to the middle. When water accelerates in the middle rather than on the sides, it is a far more cost-effective way to control river bank erosion. Besides controlling floods, it also improves the quality of the water and creates perfect habitats for different fish species.

Schauberger’s writings carefully explained the underlying principle of his theory on turbulence, namely that it is influenced by differences in temperature. The warmer layers of river water flow faster than the colder ones, creating friction, which is the source of turbulence. According to Schauberger: “a river doesn’t just flow, but winds itself forward. It rotates in its bed, or put simply, it swirls.” This principle applies to any moving water, even to a raindrop running down a window.

By understanding that the swirl or turbulence of water is the most natural way in which water flows with least resistance, Schauberger applied this to many prototype technologies for which he registered patents. He developed a machine to replicate spring water, which later formed the basis for water vitalising equipment. Among the many benefits, some are more unexpected than the others. For instance, when vitalised water is used in bakeries it retards the development of moulds.

Instead of letting water simply enter a pond through a pipe, Schauberger made it pass through a specially designed funnel to let the water whirl and gain energy. The water quality in the pond improved and algae growth reduced.

Schauberger reflected on many things. He claimed that crop productivity was declining because of the use of iron tools, saying that the rust destroys soil life. Instead, tools made from copper and copper alloys do not disturb soil magnetism and contain useful trace elements which are brought into the soil through abrasion. This improves soil micro-organisms and apparently also reduces problems with snails.

In 1948, Schauberger developed a copper bio plough, known as the Golden Plough, to loosen the soil without disturbing soil layers and micro-organisms. By copying the mole, he designed a plough that pulls the soil inward rather than pushing it outward. While this technology currently attracts quite some attention on social media, it is still not available on the market.

Jane Cobbald’s book Viktor Schauberger. A Life of Learning from Nature gives some interesting insights as to why the bio plough never made it. Apparently Schauberger wanted to go into commercial production, but he had poor negotiation skills. Fertilizer companies realized that the new plough would diminish the need for chemical fertilizers, so they approached Schauberger, asking him if he was willing to share profits if they would promote the plough. Being a convinced environmentalist his answer was a definite “no”, saying he did not want to make deals with criminals. According to his son, shortly after that Schauberger faced problems obtaining copper, so he had to abandon the project.

Using the whirl or vortex principle Schauberger also suggested that electricity could be generated without losing energy, making use of just air and water. These and many other ideas tested by a careful observer of nature, and documented in detailed writings, drawings and photographs, have continued to inspire later generations of scientists and engineers. Until today, for instance, innovators continue to deposit patents for energy-efficient desalination systems, including Schauberger’s vortex principle.

Schauberger’s guiding principle for experimentation was his intuition, which was based on his own observations of nature, his reading of old philosophers and poets, as well as on the deep knowledge of the mountain men who had spent their lives in the forests. As the story of Schauberger has shown, technological breakthroughs are often the result of holistic thinking that incorporates ideas from different disciplines and people, including artists, philosophers, farmers, foresters and engineers.

While research is needed to develop new technologies that will make our planet a better place to live for us and future generations, we also need an enabling environment that supports experimentation with novel ideas, both technical and social.

Further information

Cobbald, Jane. 2009. Viktor Schauberger. A Life of Learning from Nature, Floris Books, pp. 176.

Schauberger, Viktor – The Fertile Earth – Nature’s Energies in Agriculture, Soil Fertilisation and Forestry: Volume 3. Translated and edited by Callum Coats, 2004. pp. 212.

The Secrets of Water, The Documentary of Viktor Schauberger “Comprehend and Copy Nature”: https://www.ecoagtube.org/content/secrets-water-documentary-viktor-schauberger-comprehend-and-copy-nature

Inspiring platforms

Access Agriculture: hosts over 220 training videos in over 85 languages. Each video describes underlying principles, as such encouraging people to experiment with new ideas.

EcoAgtube: a new social media platform where anyone can upload their own videos related to ecological farming and circular economy.

Honey Bee Network: this platform gives a voice to traditional knowledge holders and grassroots innovators. Primarily based in India, it has sparked products, inventions and innovations in many countries.

Municipal compost: Teaching city governments December 27th, 2020 by

Vea la versión en español a continuación

Much of farm produce ends up in city landfills, but with a little work and some smart ideas, towns can recycle their organic waste, as I saw recently in Tiquipaya, a small city in metropolitan Cochabamba, Bolivia.

For over ten years, Tiquipaya’s municipal composter has turned some of the city’s trash into the best organic fertilizer. Ing. Denis Sánchez, who runs the city composter, obviously loves his work and is happy to show groups around the tidy (and fly-free) operation.

The first stop is reception, where garbage trucks and cooperating citizens dump off refuse: the garden trimmings from the city’s parks, wilted flowers from the cemetery, waste from the market, and trash from nearly half of the municipality’s households. At reception, Denis’ crew does their most tedious task, separating the plastic from the organic. Cooked food waste is a nuisance because it rots quickly and has “very bad microbes,” as Denis puts it.

Denis is certain that the compost picks up good microbes from its surroundings. Compost’s good microbes smell good and the only slightly bad odor is from the fresh garbage in the reception area. The composter is only four blocks from the town square, so the city government would not tolerate any bad smells. In reception, the fresh, “green” refuse is mixed about half and half with “brown” waste, such as dried tree leaves pruned from city parks. Mixing was easier when the compost plant had a chipping machine that would chop up all the tree branches. The machine broke down a few years ago, so now the crew occasionally gets a caterpillar to come in and roll over the tree branches to break them up. The small bits go into the compost and the big pieces are sold as firewood.

From reception, the blend of brown and green trash goes to the “forced air” section. Compost needs air, which can be provided by turning over the pile, but that’s a lot of work. At the Tiquipaya plant, perforated hoses force air up into each 40-ton pile of compost. The crew waters the compost once a week, for seven weeks, and during that time they do turn it one time, for an even decomposition.

After seven weeks the compost is taken to mature, like a fine wine. It is heaped up and every week it is watered, and also turned with a little front-end loader. The aged compost is then sifted in a rotating drum to remove any big pieces. The resulting fine compost is then sold to the public.  The municipality also fertilizes Tiquipaya’s city parks with the compost, so they do not have to buy any fertilizer. The city also uses the compost as potting soil to grow ornamental plants.

Of course, it’s not all easy. One limitation is education. The municipal market has separate bins for organic and plastic garbage, but most patrons toss all their trash into one can or the other. Three of the city’s eight garbage routes send a truck one day a week to collect organic trash from households. On each ride, Denis sends a member of staff along to remind residents to leave out their plastics and cooked food waste. It’s a constant job to educate the public, so sometimes the municipality rewards cooperating families with plants.

A second limitation is labor. Even with some clever machines, the hard-working staff (three full-time and four part-time, besides Denis) can process about 5.5 tons of trash per day, of the 40 tons that Tiquipaya produces. The city could compost 20 tons of rubbish, with a bit more space, additional workers and investment.

Denis says that it costs 312 Bs. ($44) to make a cubic meter of compost, which he sells for 120 Bs. ($17), a loss he has to accept because “no one would pay its true cost.”

The plant was created with an investment of 1,734,000 Bs. ($246,000) and has an annual labor cost of 185,000 Bs. ($26,000), financed by the municipal government. The compost plant has had financial and technical support from Catalonia and Japan.

The crew seems to be enjoying their morning at the plant. It is light, active work in the glorious Andean sunshine with friendly colleagues.

Tiquipaya’s large neighbor, the city of Cochabamba, has a wretched problem with its landfill, now full and rising like a tower while the surrounding residents often protest by blockading out the garbage trucks, forcing the trash to pile up in city streets.

Cities have to invest to properly dispose of their garbage. People who make trash (including the plastics industry) can be charged for its disposal. The public needs to be taught how to buy food with less plastic wrapping and how to recycle green waste at home. The good news is that cities can recycle much of their rubbish, selling the plastics, and producing compost to improve the soil and replace chemical fertilizer.

Denis thinks of his plant as a school, where others can learn. In fact, several small cities (Sacaba, Vinto, VillazĂłn, and some in the valleys of Santa Cruz) have started similar plants on the Tiquipaya model. Denis is proud to show his work to others.

With some enlightened investment, a city can turn its garbage into useful products and green jobs while avoiding unsustainable landfills, which simply bury the nutrients that farmers have won from the soil.

Related Agro-Insight blog stories

Reviving soils

Learning to teach

Trash to treasure

Smelling is believing

Offbeat urban fertilizer

Related videos

Organic biofertilizer in liquid and solid form

Good microbes for plants and soil

Compost from rice straw

Composting to beat striga

COMPOST MUNICIPAL: UNA ESCUELA PARA LAS ALCALDĂŤAS

Por Jeff Bentley

27 de diciembre del 2020

Mucha de la producción agrícola termina en los rellenos sanitarios urbanos, pero con un poco de esfuerzo y unas ideas claras, los municipios pueden reciclar su basura orgánica, como vi hace poco en Tiquipaya, una pequeña ciudad en el eje metropolitano de Cochabamba, Bolivia.

Hace más de diez años, la compostera municipal de Tiquipaya ha convertido parte de su basura en un excelente fertilizante orgánico. El Ing. Denis Sánchez dirige la compostera, y obviamente le encanta su trabajo y el mostrar su planta bien ordenada (y libre de moscas) a grupos de ciudadanos.

En la primera parada, la recepción, los camiones basureros y algunos vecinos colaboradores, dejan su basura, las podas del ornato público, flores marchitadas del cementerio, basura del mercado y de casi la mitad de las familias del municipio. En recepción, los trabajadores realizan lo más tedioso, separando los plásticos de los orgánicos. Los restos de la comida son una molestia porque se pudren rápidamente y tienen “algunos microbios muy malos,” como Denis explica.

Denis afirma que el compost adquiere buenos microbios de su entorno. Los microbios buenos huelen bien y el único olor un poco desagradable viene de la basura fresca en recepción. La planta está apenas a cuatro cuadras de la plaza principal, y la alcaldía no toleraría ningún mal olor. En recepción, la basura fresca, la “verde”, se llena mitad-mitad con los desechos “marrones” tales como la hojarasca de los parques urbanos. El mezclarlo era más fácil cuando la compostera tenía una máquina que picaba todas las ramas. La máquina se descompuso hace algunos años, y ahora de vez en cuando traen una oruga que pisotea las ramas para quebrarlas. Los pedazos pequeños entran al compost y las piezas grandes se venden como leña.

Después de la recepción, la mezcla de basura verde y marrón pasa a la sección de “aireación forzada”. El compost necesita aire, que se puede proveer con el volteo, pero es mucho trabajo. En la compostera de Tiquipaya, usan tubería perforada para empujar el aire a cada pila de 40 toneladas de compost. Riegan las pilas una vez a la semana, durante siete semanas, y durante ese tiempo las voltean una vez, para lograr una descomposición pareja.

A las siete semanas, llevan el compost a madurarse, como un vino fino. Hacen montones de compost que se riegan y se voltean cada semana con una máquina mini cargadora. El compost madurado es cernido en un dron rotatorio para sacar cualquier objeto grande. El compost fino se vende al público. La alcaldía fertiliza los parques de Tiquipaya con el compost, así que no tienen que comprar fertilizante. Además, usan el compost como sustrato para producir plantas ornamentales.

Claro que cuesta trabajo. Una limitación es la educación. El mercado municipal tiene basureros separados para plásticos y orgánicos, aunque los usuarios a veces mezclan todo. Tres de las ocho rutas del carro basurero recogen solo residuos orgánicos un día de la semana, y cada vez, Denis manda un funcionario de la planta para hacerle recuerdo a la gente que no incluyan sus plásticos ni sus restos de comida. La educación pública es un esfuerzo constante. De vez en cuando regalan plantas para premiar a los buenos vecinos.

Una segunda limitante es la mano de obra. Aun con maquinaria, el esmerado personal (tres a tiempo completo y cuatro a tiempo parcial, además del Ing. Denis) logra procesar unas 5.5 toneladas de basura por día, de las 40 toneladas que Tiquipaya produce. Con un poco más de espacio, personal, e inversión podrían compostar 20 toneladas.

Denis cuenta que cuesta 312 Bs. ($44) hacer un metro cúbico de compost, lo cual vende por 120 Bs. ($17), una pérdida que se acepta porque “nadie pagaría su costo real.”

La planta se creó con una inversión de 1,734,000 Bs. ($246,000) y tiene un costo anual de mano de obra de 185,000 Bs. ($26,000), financiada por la alcaldía. La compostera ha tenido apoyo financiero y técnico de Cataluña y del Japón.

Parece que los trabajadores municipales disfrutan de su trabajo en la planta. Es trabajo fĂ­sico, pero liviano al aire libre mientras que permite la charla entre colegas.

La ciudad vecina a Tiquipaya, Cochabamba, tiene un problema severo con su relleno sanitario, que ahora está lleno y crece como una torre, mientras los vecinos frecuentemente protestan, bloqueando la entrada a los camiones basureros, hasta que la basura se deja en montículos por toda la ciudad.

Las ciudades tienen que invertir para deshacerse correctamente de su basura. Se puede cobrar impuestos a la gente que genera la basura, incluso a las industrias de los plásticos. Hay que enseñar al público a comprar comida con menos envases plásticos, y cómo reciclar la basura verde en casa. La buena noticia es que las ciudades pueden reciclar gran parte su basura, vendiendo los plásticos y produciendo compost para mejorar el suelo y para reemplazar a los fertilizantes químicos.

Denis piensa en su planta como una escuela, donde otros pueden aprender. De hecho, varias ciudades pequeñas (Sacaba, Vinto, Villazón, y algunas en los valles de Santa Cruz), han construido plantas similares, usando el modelo de Tiquipaya. Denis está dispuesto a compartir sus conocimientos con otra gente interesada, sintiendo mucho orgullo por lo logrado.

Con un poco de inversiĂłn inteligente, una ciudad puede convertir su basura en productos Ăştiles e Ă­tems de trabajo verde, mientras evita los rellenos no sostenibles, que simplemente entierran los nutrientes ganados con tanto esfuerzo por la producciĂłn agrĂ­cola.

Previos relatos en nuestro blog

Reviving soils

Aprender a enseñar

Trash to treasure

Smelling is believing

Offbeat urban fertilizer

Videos relacionados

Organic biofertilizer in liquid and solid form

Buenos microbios para plantas y suelo

Compost from rice straw

Composting to beat striga

Living Soil: A film review December 20th, 2020 by

Written with Paul Van Mele

In the opening scenes of the film, “Living Soil,” we see the Dust Bowl: the devastated farmland of the 1930s in the southern plains of the USA. Thirty to fifty years of plowing had destroyed the soil, and in times of drought, it drifted like snow.

As the rest of this one-hour film shows, there is now some room for optimism. Nebraska farmer Keith Berns starts by telling us that most people don’t understand the soil, not even farmers. But this is changing as more and more farmers, large and small, organic and conventional, begin to pay attention to soil health, and to the beneficial microbes that add fertility to the soil. Plants produce carbon, and exchange it with fungi and bacteria for nutrients.

Mimo Davis and Miranda Duschack have a one-acre city farm in Saint Louis, Missouri. The plot used to be covered in houses, and it was a jumble of brick and clay when the urban farmers took it over. They trucked in soil, but it was of poor fertility, so they rebuilt it with compost, and cover crops, like daikon radishes. Now they are successful farmer-florists—growing flowers without pesticides so that when customers bury their noses in the bouquet, it will be as healthy as can be.

A few scientists also appear in the film. Kristin Veum, USDA soil scientist, says that soil organisms are important because they build the soil back up. Most people know that legumes fix nitrogen, but few know that it’s the microbes in association with the plants’ roots that actually fix the nitrogen from the air.

Indiana farmer Dan DeSutter explains that mulch is important not just to retain moisture, but also to keep the soil cool in the summer. This helps the living organisms in the soil to stay more active. Just like people, good microbes prefer a temperature of 20 to 25 degrees Celsius. When it gets either too hot or too cold, the micro-organisms become less active. Cover crops are also important, explains DeSutter, “Nature abhors a mono-crop.” DeSutter plants cover crops with a mix of three to 13 different plants and this not only improves the soil, but keeps his cash crops healthier.

Nebraska’s Keith Berns plants a commercial sunflower crop in a mulch of triticale straw, with a cover crop of Austrian winter pea, cowpeas, buckwheat, flax, squash and other plants growing beneath the sunflowers. This diversity then adds 15 or 20 bushels per acre of yield (1 to 1.35 tons per hectare) to the following maize crop. Three rotations per year (triticale, sunflower and maize), with cover crops, build the soil up, while a simple maize – soy bean rotation depletes it.

Adding carbon to the soil is crucial, says DeSutter, because carbon is the basis of life in the soil. In Indiana, half of this soil carbon has been lost in just 150 to 200 years of farming, and only 50 years of intensive agriculture. No-till farming reduces fertilizer and herbicide costs, increases yield and the soil improves: a win-win-win. This also reduces pollution from agrochemical runoff.

As Keith Berns explains, the Holy Grail of soil health has been no-till without herbicides. It’s difficult to do, because you have to kill the cover crop to plant your next crop. One option is to flatten the cover crop with rollers, and another solution is to graze livestock on the cover crop, although he admits that it’s “really hard” to get this combination just right.

USDA soil health expert Barry Fisher, says “Never have I seen among farmers such a broad quest for knowledge as I’m seeing now.” The farmers are willing to share their best-kept secrets with each other, which you wouldn’t see in many other businesses.

Many of these farmers are experimenting largely on their own, but a little State support can make a huge difference. In the 1990s in Maryland, the Chesapeake Bay had an outbreak of Pfiesteria, a disease that was killing the shellfish. Scientists traced the problem to phosphorous, from chemical fertilizer runoff. Maryland’s State Government began to subsidize and promote cover crops, which farmers widely adopted. After 20 years, as Chesapeake Bay waterman James “Ooker” Eskridge explains, the bay is doing better. The sea grass is coming back. The blue crab population is doing well, the oysters are back and the bay looks healthier than it has in years.

Innovative farmers, who network and encourage each other, are revolutionizing American farming. As of 2017, US farmers had adopted cover crops and other soil health measures on at least 17 million acres (6.9 million hectares), a dramatic increase over ten years earlier, but still less than 10% of the country’s farmland. Fortunately, triggered by increased consumer awareness, these beneficial practices are catching on, which is important, because healthier soil removes carbon from the atmosphere, reduces agrochemical use, retains moisture to produce a crop in dry years, and grows more food. The way forward is clear. Measures like targeted subsidies to help farmers buy seed of cover crops have been instrumental to help spread agroecological practices. Experimenting farmers must be supported with more public research and with policies that promote healthy practices like mulching, compost, crop rotation and cover crops.

Watch the film

Living Soil directed by Chelsea Wright, Soil Health Institute

Related Agro-Insight blog stories

A revolution for our soil

Reviving soils

The intricacies of mulching

Stop erosion

What counts in agroecology

The big mucuna

Farming with trees

Videos on soil health practices

Organic biofertilizer in liquid and solid form

Vermiwash: an organic tonic for crops

Living windbreaks to protect the soil

Good microbes for plants and soil

Mulch for a better soil and crop

Making a vermicompost bed

Grass strips against soil erosion

Intercropping maize with pigeon peas

Intercropping pineapples

The wonder of earthworms

Reviving soils with mucuna

Old know-how, early warning November 22nd, 2020 by

Vea la versión en español a continuación

In the Bolivian Andes, some officials are starting using local knowledge to improve their early warning systems for natural disasters.

For centuries, local farmers have used the signs of nature (clouds, stars, the behavior of plants and animals) to predict disasters like hail, floods and droughts, and to forecast the welcome rains that make crops grow.

Then, starting in 2004, Prosuco (a Bolivian organization) began to organize farmers with an interest in weather and organic farming. These expert farmers, called Yapuchiris, were encouraged to teach other farmers.

In southwest Bolivia, high on the Altiplano, the local government and the Technical University in Oruro are collaborating with some of these organized Yapuchiris to provide early warning, as Professor Gunnar Guzmán explained in a recent webinar. As he put it: the Yapuchiris, using local knowledge of nature, are excellent at making long-term predictions, three to four months in advance. Meteorologists cannot make such predictions, although they are quite accurate at about 4 days in the future.

Olson Paravicini of the Risk Management Unit of the government of Oruro added that the Yapuchiris’ knowledge is local, so that each one forecasts the weather for his or her own community. This matters in a place as big as Oruro. At 53,558 square kilometers, Oruro is about the size of New York state, bigger than the Netherlands. To apply local knowledge of weather over such a large area, Paravicini and colleagues are collaborating with groups of Yapuchiris, gathering their predictions to compile a departmental level forecast to provide early warnings of floods and other nasty weather.

One of the Yapuchiris, Bernabé Choquetopa, also had a slot on the webinar, explaining several of the signs he looks for. For example, when the leque leque (Andean lapwing) migrates back into Oruro in September, don Bernabé looks at its wing. If the patch on the bird’s wing is green, the rains will be good. Green eggs also mean good rain, and dark eggs mean drought. The signs reinforce each other, so after explaining that the ayrampu cactus was bearing lots of fruit and that the foxes had healthy coats, don Bernabé predicted that this would be a good, normal year for rains in his part of Oruro.

Professional weather observers are now paying attention to the Yapuchiris, who are increasingly organized and well respected. Guzmán thinks that some of the local signs of nature are 90% accurate, a probability that increases as several are used together.

Plants and animals that have evolved in a harsh landscape may have behaviors that reflect the coming weather. Observant local people have the wisdom to pay attention to the local patterns of life. I’m optimistic when I see local scientists who have respect for this knowledge. That alone is a good sign for the future.

Related blog stories

Cultivating pride in the Andes

Reading the mole hills

To see the future

Related videos

Recording the weather

Forecasting the weather with an app

Scientific names

Ayrampu: Opuntia soehrensii

Andean lapwing: Vanellus resplendens

Andean fox: Lycalopex culpaeus

Further reading

Unfortunately, I can’t find a recording of the webinar (16 November 2020), but the seminar, the speakers and the titles of their presentations were:

Seminario Virtual Saberes Ancestrales de Bioindicadores Naturales para la ReducciĂłn de Riesgos Agropecuarios

Ing. Naida Rufino Challa, SEDAG-GAD ORU (Servicio Departamental de Agricultura y GanaderĂ­a, Gobierno AutĂłnomo Departamental de Oruro). Mejoramiento del sistema de alerta temprana del sector agropecuario en el departamento de Oruro.

M.Sc. Ing. Gunnar D. Guzmán Vega, FCAN-UTO (Facultad de Ciencias Agrarias y Naturales, Universidad Técnica de Oruro). Efectividad de los indicadores naturales en la predicción climática en las comunidades.

Bernabé Choquetopa Rodríguez. Informante local. Pronósticos locales 2020-2021 del sur de Oruro.

Ing. Olson C. Paravicini Figueredo, UGR-GAD ORU (Unidad de Gestión de Riesgos, Gobierno Autónomo Departamental de Oruro). Bioindicadores y tecnología informática como sistema integrado de alerta temprana.

SABERES ANTIGUOS, ALERTA TEMPRANA

Por Jeff Bentley, 22 de noviembre del 2020

En los Andes bolivianos, algunas autoridades han empezado a usar los conocimientos locales para mejorar sus sistemas de alerta temprana de desastres naturales.

Durante siglos, los agricultores locales han leĂ­do los signos de la naturaleza (las nubes, las estrellas, el comportamiento de las plantas y los animales) para predecir desastres como la granizada, las riadas y las sequĂ­as, y para pronosticar las queridas lluvias que nutren a los cultivos.

Luego, a partir de 2004, Prosuco (una organización boliviana) comenzó a organizar a los agricultores interesados en el clima y la agricultura orgánica. Se les alentó a estos agricultores expertos, llamados Yapuchiris, a que enseñaran a los demás.

En el Altiplano del sudoeste de Bolivia, el gobierno local y la Universidad Técnica de Oruro están colaborando con algunos de estos Yapuchiris organizados para dar una alerta temprana, como explicó el Ingeniero Gunnar Guzmán hace poco en un webinar. Según él, los Yapuchiris, con su conocimiento local de la naturaleza, hacen acertadas predicciones a largo plazo, con tres o cuatro meses de anticipación. A cambio, los meteorólogos no pueden hacer eso, aunque hacen buenos pronósticos a unos 4 días en el futuro.

Olson Paravicini, de la Unidad de Gestión de Riesgos del Gobierno Autónomo Departamental de Oruro, añadió que el conocimiento de los Yapuchiris es local, de modo que cada uno pronostica el tiempo para su propia comunidad. Esto es importante en un lugar tan grande como Oruro. Con 53.558 kilómetros cuadrados, Oruro es el tamaño del Costa Rica, más grande que los Países Bajos. Para aplicar el conocimiento local del tiempo en una zona tan grande, Paravicini y sus colegas están colaborando con grupos de Yapuchiris, aprendiendo sus pronósticos para compilar un sistema de alerta temprana a nivel departamental para predecir riadas y otros desastres climáticos.

Uno de los Yapuchiris, Bernabé Choquetopa, también habló en el webinar, explicando varias de los indicadores que él busca. Por ejemplo, cuando el leque rebinar vuelve a Oruro en septiembre, don Bernabé mira su ala. Si es verduzca, las lluvias serán buenas. Los huevos verdes también significan buena lluvia, pero los huevos oscuros significan sequía. Los signos se refuerzan mutuamente, así que después de explicar que el cactus ayrampu estaban cargados de frutos y que los zorros tenían buen pelaje, don Bernabé predijo que este año sería bueno y normal para las lluvias en su sector de Oruro.

Ahora algunos meteorólogos profesionales prestan atención a los Yapuchiris, que son cada vez más organizados y respetados. Guzmán cree que algunos de los signos locales de la naturaleza tienen una precisión del 90%, probabilidad que aumenta a medida que se usan varios indicadores juntos.

Las plantas y los animales que han evolucionado en una tierra inhóspita pueden tener comportamientos que reflejan el tiempo y el clima. La gente local tiene la sabiduría de observar cuidadosamente a los patrones locales de vida. Soy optimista cuando veo que los científicos locales ganan respeto por este conocimiento. Eso sí es una buena señal para el futuro.

Related blog stories

Cultivando orgullo en los Andes

Leyendo el nido del topo

Conocer el futuro

Videos sobre el tema

Hacer un registro del clima

Pronosticar el clima con una aplicaciĂłn

Nombres cientĂ­ficos

Ayrampu: Opuntia soehrensii

Leque leque: Vanellus resplendens

Zorro andino: Lycalopex culpaeus

Lectura adicional

Infelizmente, no ubico una grabaciĂłn del webinar (16 de noviembre del 2020), pero el seminario virtual, los discursantes y sus presentaciones eran:

Seminario Virtual Saberes Ancestrales de Bioindicadores Naturales para la ReducciĂłn de Riesgos Agropecuarios

Ing. Naida Rufino Challa, SEDAG-GAD ORU (Servicio Departamental de Agricultura y GanaderĂ­a, Gobierno AutĂłnomo Departamental de Oruro). Mejoramiento del sistema de alerta temprana del sector agropecuario en el departamento de Oruro.

M.Sc. Ing. Gunnar D. Guzmán Vega, FCAN-UTO (Facultad de Ciencias Agrarias y Naturales, Universidad Técnica de Oruro). Efectividad de los indicadores naturales en la predicción climática en las comunidades.

Bernabé Choquetopa Rodríguez. Informante local. Pronósticos locales 2020-2021 del sur de Oruro.

Ing. Olson C. Paravicini Figueredo, UGR-GAD ORU (Unidad de Gestión de Riesgos, Gobierno Autónomo Departamental de Oruro). Bioindicadores y tecnología informática como sistema integrado de alerta temprana.

Design by Olean webdesign