WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Iron for organic pigs May 16th, 2021 by

Organic agriculture is on the rise, but as the sector grows and more farmers convert from conventional to organic farming, regulations are continuously fine-tuned. Finding a balance between animal welfare and the heavy debt burden many conventional farmers have due to past investments in modern pig houses is a delicate exercise, as I recently learned from my friend, Johan Hons, a long-time organic farmer in north-eastern Belgium.

“When some 40 years ago a neighbour farmer offered to let me use one of his vacant stables, I bought my first Piétrain pigs (a Belgian breed of pig) and started rearing. In those early years, I always supplemented iron. A few years later, Vera and I were able to start our own farm. We were convinced that organic farming was the only way food should be produced, so I gave my pigs the space to roam around in the field. Ever since then, they never needed any iron injections and they never got sick,” Johan says.

Iron is an essential mineral for all livestock, especially for piglets. Iron-deficient piglets will suffer from anaemia: they will remain pale, stunted, have chronic diarrhoea and if left untreated they will die. Worldwide, piglets are commonly injected with a 200 milligram dose of iron a few days after birth. Although this intramuscular injection is effective against anaemia, it is very stressful to the piglets.

In a natural environment a sow acquires enough iron from the soil during rooting behaviour, which she passes on to the suckling piglets through her milk. But most pigs in conventional farming in Belgium are raised on slatted floors and have no access to soil. Sows only have enough iron reserves for their first litter. Piglets of the second and third litter would already have a shortage of iron and become sick, unless given supplements.

Under Belgian regulations, organic meat pigs are allowed only one medical treatment for whatever illness. If a second treatment is given, pigs can only be sold in the conventional circuit and hence farmers do not get a premium price. With more conventional farmers eager to convert to organic to earn a higher income, members of Bioforum, the Belgian multi-stakeholder platform for organic agriculture, requested the regulatory authorities whether iron injections could be considered as a non-medical treatment.

As a member of Bioforum, Johan suggested an alternative: “When the sow delivers in the sty, I daily give her piglets a few handfuls of soil from the moment they are one week old. I put it out of reach of the sow, otherwise she would eat it, and continue doing so until the piglets are a few weeks old and allowed outside. Just like human babies, the piglets have a curious nature and by giving them early access to soil, they immediately build up their iron stores and immunity.”

For Johan caring for animals is knowing what they need and providing them with all the comfort throughout their life. This starts at birth-giving.

However, his suggestion initially got a cold reception at the forum, whose members also includes retailers. Most farmers who want to convert to organic do not have the possibility of letting their pigs roam on the land, showing the dire realities of conventional farms in Belgium, where concrete is more abundant around the pig houses than soil.

And however creative they found Johan’s suggestion to provide piglets with soil in the stables, this was not considered a feasible option. Conventional farmers have invested heavily in modern pig houses with slatted floors and automated manure removal systems and bringing in soil would obstruct the system. Adjusting such houses to cater for organic farming is an expense few farmers are willing to make.

Belgian authorities decided that, because of lack of commercial alternatives to iron injections, they would be temporarily accepted in organic agriculture, on the condition that the iron formulation is not mixed with antibiotics.

A sustainable food system is at the heart of the European Green Deal. As the European Commission has set a target under its farm to fork strategy to have 25% of the land under organic agriculture by 2030, it will need to reflect on how far the regulations for organic agriculture can be stretched, as well as on possible measures to support farmers to convert.

If left to the pigs to decide, they would surely opt for more time outdoors and less concrete around their houses, not a tweak in the regulations to declassify iron injection as a medical treatment.

Related blogs

Against or with nature

Smelling is believing

Mobile slaughterhouses

Five heads think better than one

Asking about cows

Kicking the antibiotic habit

Big chicken, little chicken

Related video

Housing for pigs

Inspiring platforms

Access Agriculture: hosts over 220 training videos in over 85 languages on a diversity of crops and livestock, sustainable soil and water management, basic food processing, etc. Each video describes underlying principles, as such encouraging people to experiment with new ideas.

EcoAgtube: a new social media platform where anyone from across the globe can upload their own videos related to natural farming and circular economy.

A Greener Revolution in Africa May 2nd, 2021 by

After settling in the USA in the 1990s, Isaac Zama would visit his native Cameroon almost every year, until war broke out in late 2016, and it became too dangerous to go home. About that same time a new satellite TV company, the Southern Cameroons Broadcasting Corporation (SCBC), was formed to broadcast news and information in English. (Cameroon was formed from a French colony and part of a British one in 1961).

In 2018, Isaac approached SCBC to start a TV program on agriculture to help Southern Cameroonians who could no longer work as a result of the war, and the thousands of refugees who sought refuge in Nigeria. The broadcasters readily agreed. With his PhD in agriculture and rural development from the University of Wisconsin-Madison, and his roots in a Cameroonian village, Isaac was well placed to find content that farmers back home would appreciate. “I did some research on the Internet, and I found Access Agriculture,” said Isaac. “I liked it so much that I watched every single video.”

Isaac soon started a TV program, Amba Farmers’ Voice, which began to air every Sunday at 4 PM, Cameroon time. It is rebroadcast several times a week to give more people a chance to watch the program. With frequent power cuts many are not able to tune in on Sundays.

The program is broadcast live from Isaac’s studio in Virginia. He starts with a basic introduction in West African Pidgin. “If I’m going to show a video on rabbits, I start by explaining what a is rabbit,” Isaac explains. “And that we can learn from farmers in Kenya how to build a rabbit house, and to care for these animals.” After playing an Access Agriculture video on the topic (in English), Isaac comments on it in Pidgin, for the older, rural viewers who may not speak English. His remarks are carefully scripted, and based on background reading and research.

The show lasts an hour or more and allows Isaac to play several videos. Amba Farmers’ Voice has its own Facebook and YouTube pages. While his program is on the air, Isaac checks out the Facebook page to get an idea of how many people are watching. A popular topic like caring for rabbits may have 1,000 viewers just on Facebook. But most people watch the satellite broadcast. SCBC estimates that two to three million people watch Amba Farmers’ Voice in Cameroon, but many others also watch it in Nigeria, Ghana, Sierra Leone and even in some Francophone countries, like Benin and Gabon.

Some farmers reciprocate, sending Isaac pictures and videos that they have shot themselves, showing off their own experiments, adapting the ideas from the videos to conditions in Cameroon. Isaac heard from one group of “mothers in the village” who showed how they were using urine to fertilize their corn, after watching an Access Agriculture video from Uganda.

People in refugee camps watched the video on sack mounds, showing how to grow vegetables in a large, soil-filled bag. But gunny sacks were scarce in the refugee camp, so people improvised, filling plastic bags with earth and growing tomatoes in them, so they could grow some food within the confines of the camp.

Isaac mentioned that people were installing drip irrigation after seeing the video from Benin about it.

“That can be expensive,” I said. “People have to buy materials.”

“Not really,” Isaac answered. Gardeners take used drink bottles from garbage dumps, fill them with water, poke holes in the cap, and leave them to drip slowly on their plants.

After seeing the video from Benin on feeding giant African snails (for high-quality meat), one young man in the Southern Cameroons got used tires and stacked one on top of the other to make the snail pen. It’s an innovation he came up with after watching the Access Agriculture video. He puts two tires in a stack, puts the snails in the bottom, and feeds them banana peels and other fruit and vegetable waste. Isaac tells his audience “We don’t need to buy anything. Just open your eyes and adapt. See what you can find to use.”

Solar dryers were another topic that people adapted from the videos. To save money, they made the dryers from bamboo, instead of wood, and shared one between several families. As a further adaptation, people are drying grass in the solar dryer. Access Agriculture has four videos on using solar dryers to preserve high value produce like pineapples, mangoes and chillies, but none show grass drying. Isaac explains that you sprinkle a little salt on the grass as you dry it. Then, in the dry season you put the grass in water and it turns fresh again. Now he is encouraging youth to form groups so they can dry grass to store, to sell to farmers when forage is scarce.

I was delighted to see so many local experiments, just from people who watch videos on television, with no extension support.

All of this interaction, between Isaac Zama and his compatriots, the teaching, feedback and organisation, is all happening on TV and online. He hasn’t been to Cameroon since he started his program.  Isaac’s interaction with his audience amazes me. It’s a testimony to his talent, but also to the improved connectivity in rural Africa.

“People think that Africans don’t have cell phones,” Isaac says, “but 30% of the older farmers in villages have android phones. Their adult children, living in cities or abroad, buy phones for their parents so they can stay in touch and so they can see each other on WhatsApp.” Isaac adds that what farmers need now is an app so they can watch agricultural videos cheaper.

Dr. Isaac Zama wants to encourage other stations to broadcast farmer learning videos: “Those videos from Access Agriculture will revolutionize agriculture in Africa in two or three years, if our national leaders would just broadcast them on TV. The farmers would do it themselves, just from the information they can see on the videos.” Isaac is willing to collaborate with other TV stations across the world, to share his experience or to broadcast Amba Farmers Voice, but particularly with broadcasters in Africa who are interested in agricultural development

Related Agro-Insight blogs

To drip or not to drip

Drip irrigation saves water in South Sudan

Cell phones for smallholders

A connecting business

Staying grounded while on the air in Ghana

Watch the Access Agriculture videos mentioned in this story

How to build a rabbit house

Human urine as fertilizer

Using sack mounds to grow vegetables

Drip irrigation for tomato

Feeding snails

Solar drying pineapples, Making mango crisps, Solar drying of kale leaves and Solar drying of chillies

 

Peasants, not princes: the potato finds a home in Europe April 18th, 2021 by

The French philosopher Antoine Parmentier (1730-1815) introduced the potato into his country by having it planted with great fanfare in the king’s gardens. Guards were posted to protect the new crop, ostensibly to prevent thefts, but really to draw attention to it. When the guards were withdrawn overnight from the now mature crop, curious farmers snuck in and dug up the potatoes to plant in their own fields, just as the clever Parmentier had intended.

Some years ago I told this story from the podium of the National Potato Congress in Bolivia. My audience of Andean potato experts loved the tale, which is one reason why I must retract it now, for it is simply a bit of fake history, penned by Parmentier’s friend and biographer, Julien-Joseph Virey.

Perhaps I should have known better, but in the potato story I learned in grad school, European peasants resisted the tuber brought back by Spanish sailors fresh from the conquest of Peru in the 1530s. Europeans were used to eating cereals, and the potato lived underground, like the devil, or so went the story.

In a recent book, British historian Rebecca Earle sets the potato record straight. She points out that European peasants did eat root crops, like carrots and turnips.

Earle also shows that European peasants embraced the potato from the start, often growing it discretely in a home garden, for once a new crop was widely grown and sold, it acquired a market value and could be taxed and tithed.

According to court records from Cornwall in 1768, a clergyman sued one of his flock because she was growing potatoes without paying him a tithe. Witnesses testified that the potato had already been grown for many generations in Cornwall. The potato was also mentioned in Marx Rumpolt’s cookbook published in Frankfurt in 1681. During the Nine Years War (1688-1697) so many potatoes were grown in Flanders that soldiers were able to survive by pilfering potatoes from peasants’ fields.

The potato was widely grown all over Europe (in France, too) before Parmentier was born. Then as now, smallholder farmers were eager to experiment with new crops. Peasants spread the potato across Europe long before the nobles paid it much attention. Earle also writes that potatoes were being grown commercially in the Canary Islands by the 1570s, and shipped to France and the Netherlands.

In Earle’s analysis, after widespread hunger in the mid-1700s fueled popular revolts, kings began to realize that a well-fed, healthy population would be more productive. Rulers finally saw that it was in their own self-interest for the state to assume some responsibility to ensure that their subjects’ had enough food to eat.

Potatoes yielded as much as three times more food per hectare than rye and other grain crops. Monarchs, like King Louis XIV (patron of Parmentier) belatedly began to understand the advantages of potatoes and entered the history books as a promotor of the new crop. Other historical inaccuracies arose. Frederick the Great is erroneously portrayed as introducing Germans to the potato.

The myth that the conservative peasants were afraid to grow and eat potatoes, or that the potato was spread across Europe by emperors and philosophers has proven a pervasive piece of fake history. These stories burnished the reputations of the elites at the expense of the peasants and home gardeners. Many of the true potato promotors were women, who tended the home gardens, ideal spaces for the experiments that helped the potato become the world’s fourth most widely grown crop, now produced in nearly every country of the world. Yet further proof that smallholder farmers have always been eager to try new crops and other innovations.

Further reading

Earle, Rebecca 2020 Feeding the People: The Politics of the Potato. Cambridge: Cambridge University Press. 306 pp.

Related Agro-Insight blogs

Native potatoes, tasty and vulnerable

My wild Andean shamrock

Stored crops of the Inka

CAMPESINOS, NO PRĂŤNCIPES: ACOGIENDO LA PAPA EN EUROPA

Por Jeff Bentley, 18 de abril del 2021

El filósofo francés Antoine Parmentier (1730-1815) introdujo la papa en su país haciéndola sembrar a bombo y platillo en los jardines del rey. Se colocaron guardias para proteger el nuevo cultivo, aparentemente para evitar robos, pero en realidad para llamar la atención. Cuando los guardias se retiraron de la noche a la mañana del cultivo ya maduro, los campesinos curiosos se colaron y desenterraron las papas para sembrarlas en sus propios huertos, tal y como pretendía el astuto Parmentier.

Hace algunos años conté esta historia desde el podio del Congreso Nacional de la Papa en Bolivia. A mi público de expertos andinos en la papa le encantó el relato, lo cual es una de las razones por las que debo retractarme ahora, ya que es nada más que una historia falsa, escrita por el amigo y biógrafo de Parmentier, Julien-Joseph Virey.

Tal vez debería haberlo sabido, pero en la historia de la papa que aprendí en la universidad, los campesinos europeos se resistieron al tubérculo traído por los marineros españoles recién llegados de la conquista de Perú en la década de 1530. Los europeos estaban acostumbrados a comer cereales, y la papa vivía bajo tierra, como el diablo, o al menos así me contaban.

En un libro reciente, la historiadora británica Rebecca Earle aclara la historia de la papa. Señala que los campesinos europeos sí comían cultivos de raíces, como zanahorias y nabos.

Earle también demuestra que los campesinos europeos adoptaron la papa desde el principio, a menudo cultivándola discretamente en el jardín de su casa, ya que una vez que un nuevo cultivo se extendía y se vendía, adquiría un valor de mercado y podía ser gravado y diezmado.

Según las actas judiciales de Cornualles de 1768, un clérigo demandó a un miembro de su congregación, porque ella cultivaba papas sin pagarle el diezmo. Los testigos declararon que la papa ya se había cultivado durante muchas generaciones en Cornualles. La papa también se menciona en el libro de cocina de Marx Rumpolt, publicado en Frankfurt en 1681. Durante la Guerra de los Nueve Años (1688-1697) se cultivaron tantas papas en Flandes que los soldados pudieron sobrevivir robando papas de los campos de los campesinos.

La papa se cultivaba ampliamente en toda Europa (también en Francia) antes de que naciera Parmentier. En aquel entonces, igual que hoy en día, a los pequeños agricultores les gusta experimentar con nuevos cultivos. Los campesinos difundieron la papa por toda Europa mucho antes de que los nobles le prestaran mucha atención. Earle también escribe que en la década de 1570 ya se cultivaban papas comercialmente en las Islas Canarias y se enviaban a Francia y los Países Bajos.

Según el análisis de Earle, después de que el hambre generalizada a mediados del siglo XVII alimentara las revueltas populares, los reyes empezaron a darse cuenta de que una población bien alimentada y sana sería más productiva. Los gobernantes finalmente vieron que les interesaba que el Estado asumiera alguna responsabilidad para garantizar que sus súbditos tuvieran suficientes alimentos para comer.

Las papas producían hasta tres veces más alimentos por hectárea que el centeno y otros cultivos de cereales. Los monarcas, como el rey Luis XIV (mecenas de Parmentier), empezaron a comprender tardíamente las ventajas de la papa y entraron en los libros de historia como promotores del nuevo cultivo. Surgieron otras inexactitudes históricas. Federico el Grande es presentado erróneamente como el introductor de la patata para los alemanes.

El mito de que los campesinos conservadores tenían miedo de cultivar y comer papas, o que la papa fue difundida por toda Europa por emperadores y filósofos, ha resultado ser una pieza omnipresente de la historia falsa. Estos relatos han servido para engrosar la reputación de las élites a costa de los campesinos y los jardineros. Muchos de los verdaderos promotores de la papa fueron mujeres, que cuidaban los huertos caseros, espacios ideales para los experimentos que ayudaron a que la papa se convirtiera en el cuarto cultivo más extendido del mundo, que ahora se produce en casi todos los países del globo. Una prueba más de que los pequeños agricultores siempre han estado dispuestos a probar nuevos cultivos y otras innovaciones.

Lectura adicional

Earle, Rebecca 2020 Feeding the People: The Politics of the Potato. Cambridge: Cambridge University Press. 306 pp.

Historias relacionadas del blog de Agro-Insight

Papas nativas, deliciosas y vulnerables

My wild Andean shamrock

Stored crops of the Inka

A Life of Learning from Nature March 14th, 2021 by

When knowledge is blocked from being freely shared, humankind can lose a lot of precious time to make the world a better place. This dawned on me once more after I stumbled upon The Secrets of Water, a video documentary about the life of Viktor Schauberger.

Born in 1885 as the son of an Austrian forest superintendent, Viktor spent many hours in nature observing and reflecting upon what he saw, always trying to keep an open mind. Later, he went on to study forestry and got inspired by poets like Goethe who instilled in him the importance of making full use of our senses to better understand the Ur-phenomenon or the essential quality of what one observes.

Wikipedia describes Schauberger as a naturalist, pseudoscientist, philosopher, inventor and biomimicry experimenter. While pseudoscientist sounds like a dishonest version of a scientist or someone who stands for “fake science”, Schauberger’s insights from nearly a century ago have proven far more influential than what most modern-day scientists could aspire to achieve in a life-time, even with the help of advanced technologies and nanosecond computing devices.

Science  ̶  and technological innovations  ̶  have often ignored local knowledge and even obstructed its dissemination. In 1930, the Austrian Academy of Sciences confirmed the receipt of a sealed envelope entitled “Turbulence”. In it, Schauberger described his theory of interdependency of water temperature and movement. The Academy kept it concealed for 50 years, probably partly because Schauberger continued to criticise their water resource management strategies. His work became the basis for many eco-technological innovations.

For instance, instead of protecting river banks with boulders, Schauberger explained that it makes more sense to control the flow of the river from the inner part of the river, not from the sides. Some unconventional engineers have taken this to heart and have meticulously placed lines of boulders like a funnel inside the river to convert the energy of the river from the sides to the middle. When water accelerates in the middle rather than on the sides, it is a far more cost-effective way to control river bank erosion. Besides controlling floods, it also improves the quality of the water and creates perfect habitats for different fish species.

Schauberger’s writings carefully explained the underlying principle of his theory on turbulence, namely that it is influenced by differences in temperature. The warmer layers of river water flow faster than the colder ones, creating friction, which is the source of turbulence. According to Schauberger: “a river doesn’t just flow, but winds itself forward. It rotates in its bed, or put simply, it swirls.” This principle applies to any moving water, even to a raindrop running down a window.

By understanding that the swirl or turbulence of water is the most natural way in which water flows with least resistance, Schauberger applied this to many prototype technologies for which he registered patents. He developed a machine to replicate spring water, which later formed the basis for water vitalising equipment. Among the many benefits, some are more unexpected than the others. For instance, when vitalised water is used in bakeries it retards the development of moulds.

Instead of letting water simply enter a pond through a pipe, Schauberger made it pass through a specially designed funnel to let the water whirl and gain energy. The water quality in the pond improved and algae growth reduced.

Schauberger reflected on many things. He claimed that crop productivity was declining because of the use of iron tools, saying that the rust destroys soil life. Instead, tools made from copper and copper alloys do not disturb soil magnetism and contain useful trace elements which are brought into the soil through abrasion. This improves soil micro-organisms and apparently also reduces problems with snails.

In 1948, Schauberger developed a copper bio plough, known as the Golden Plough, to loosen the soil without disturbing soil layers and micro-organisms. By copying the mole, he designed a plough that pulls the soil inward rather than pushing it outward. While this technology currently attracts quite some attention on social media, it is still not available on the market.

Jane Cobbald’s book Viktor Schauberger. A Life of Learning from Nature gives some interesting insights as to why the bio plough never made it. Apparently Schauberger wanted to go into commercial production, but he had poor negotiation skills. Fertilizer companies realized that the new plough would diminish the need for chemical fertilizers, so they approached Schauberger, asking him if he was willing to share profits if they would promote the plough. Being a convinced environmentalist his answer was a definite “no”, saying he did not want to make deals with criminals. According to his son, shortly after that Schauberger faced problems obtaining copper, so he had to abandon the project.

Using the whirl or vortex principle Schauberger also suggested that electricity could be generated without losing energy, making use of just air and water. These and many other ideas tested by a careful observer of nature, and documented in detailed writings, drawings and photographs, have continued to inspire later generations of scientists and engineers. Until today, for instance, innovators continue to deposit patents for energy-efficient desalination systems, including Schauberger’s vortex principle.

Schauberger’s guiding principle for experimentation was his intuition, which was based on his own observations of nature, his reading of old philosophers and poets, as well as on the deep knowledge of the mountain men who had spent their lives in the forests. As the story of Schauberger has shown, technological breakthroughs are often the result of holistic thinking that incorporates ideas from different disciplines and people, including artists, philosophers, farmers, foresters and engineers.

While research is needed to develop new technologies that will make our planet a better place to live for us and future generations, we also need an enabling environment that supports experimentation with novel ideas, both technical and social.

Further information

Cobbald, Jane. 2009. Viktor Schauberger. A Life of Learning from Nature, Floris Books, pp. 176.

Schauberger, Viktor – The Fertile Earth – Nature’s Energies in Agriculture, Soil Fertilisation and Forestry: Volume 3. Translated and edited by Callum Coats, 2004. pp. 212.

The Secrets of Water, The Documentary of Viktor Schauberger “Comprehend and Copy Nature”: https://www.ecoagtube.org/content/secrets-water-documentary-viktor-schauberger-comprehend-and-copy-nature

Inspiring platforms

Access Agriculture: hosts over 220 training videos in over 85 languages. Each video describes underlying principles, as such encouraging people to experiment with new ideas.

EcoAgtube: a new social media platform where anyone can upload their own videos related to ecological farming and circular economy.

Honey Bee Network: this platform gives a voice to traditional knowledge holders and grassroots innovators. Primarily based in India, it has sparked products, inventions and innovations in many countries.

Municipal compost: Teaching city governments December 27th, 2020 by

Vea la versión en español a continuación

Much of farm produce ends up in city landfills, but with a little work and some smart ideas, towns can recycle their organic waste, as I saw recently in Tiquipaya, a small city in metropolitan Cochabamba, Bolivia.

For over ten years, Tiquipaya’s municipal composter has turned some of the city’s trash into the best organic fertilizer. Ing. Denis Sánchez, who runs the city composter, obviously loves his work and is happy to show groups around the tidy (and fly-free) operation.

The first stop is reception, where garbage trucks and cooperating citizens dump off refuse: the garden trimmings from the city’s parks, wilted flowers from the cemetery, waste from the market, and trash from nearly half of the municipality’s households. At reception, Denis’ crew does their most tedious task, separating the plastic from the organic. Cooked food waste is a nuisance because it rots quickly and has “very bad microbes,” as Denis puts it.

Denis is certain that the compost picks up good microbes from its surroundings. Compost’s good microbes smell good and the only slightly bad odor is from the fresh garbage in the reception area. The composter is only four blocks from the town square, so the city government would not tolerate any bad smells. In reception, the fresh, “green” refuse is mixed about half and half with “brown” waste, such as dried tree leaves pruned from city parks. Mixing was easier when the compost plant had a chipping machine that would chop up all the tree branches. The machine broke down a few years ago, so now the crew occasionally gets a caterpillar to come in and roll over the tree branches to break them up. The small bits go into the compost and the big pieces are sold as firewood.

From reception, the blend of brown and green trash goes to the “forced air” section. Compost needs air, which can be provided by turning over the pile, but that’s a lot of work. At the Tiquipaya plant, perforated hoses force air up into each 40-ton pile of compost. The crew waters the compost once a week, for seven weeks, and during that time they do turn it one time, for an even decomposition.

After seven weeks the compost is taken to mature, like a fine wine. It is heaped up and every week it is watered, and also turned with a little front-end loader. The aged compost is then sifted in a rotating drum to remove any big pieces. The resulting fine compost is then sold to the public.  The municipality also fertilizes Tiquipaya’s city parks with the compost, so they do not have to buy any fertilizer. The city also uses the compost as potting soil to grow ornamental plants.

Of course, it’s not all easy. One limitation is education. The municipal market has separate bins for organic and plastic garbage, but most patrons toss all their trash into one can or the other. Three of the city’s eight garbage routes send a truck one day a week to collect organic trash from households. On each ride, Denis sends a member of staff along to remind residents to leave out their plastics and cooked food waste. It’s a constant job to educate the public, so sometimes the municipality rewards cooperating families with plants.

A second limitation is labor. Even with some clever machines, the hard-working staff (three full-time and four part-time, besides Denis) can process about 5.5 tons of trash per day, of the 40 tons that Tiquipaya produces. The city could compost 20 tons of rubbish, with a bit more space, additional workers and investment.

Denis says that it costs 312 Bs. ($44) to make a cubic meter of compost, which he sells for 120 Bs. ($17), a loss he has to accept because “no one would pay its true cost.”

The plant was created with an investment of 1,734,000 Bs. ($246,000) and has an annual labor cost of 185,000 Bs. ($26,000), financed by the municipal government. The compost plant has had financial and technical support from Catalonia and Japan.

The crew seems to be enjoying their morning at the plant. It is light, active work in the glorious Andean sunshine with friendly colleagues.

Tiquipaya’s large neighbor, the city of Cochabamba, has a wretched problem with its landfill, now full and rising like a tower while the surrounding residents often protest by blockading out the garbage trucks, forcing the trash to pile up in city streets.

Cities have to invest to properly dispose of their garbage. People who make trash (including the plastics industry) can be charged for its disposal. The public needs to be taught how to buy food with less plastic wrapping and how to recycle green waste at home. The good news is that cities can recycle much of their rubbish, selling the plastics, and producing compost to improve the soil and replace chemical fertilizer.

Denis thinks of his plant as a school, where others can learn. In fact, several small cities (Sacaba, Vinto, VillazĂłn, and some in the valleys of Santa Cruz) have started similar plants on the Tiquipaya model. Denis is proud to show his work to others.

With some enlightened investment, a city can turn its garbage into useful products and green jobs while avoiding unsustainable landfills, which simply bury the nutrients that farmers have won from the soil.

Related Agro-Insight blog stories

Reviving soils

Learning to teach

Trash to treasure

Smelling is believing

Offbeat urban fertilizer

Related videos

Organic biofertilizer in liquid and solid form

Good microbes for plants and soil

Compost from rice straw

Composting to beat striga

COMPOST MUNICIPAL: UNA ESCUELA PARA LAS ALCALDĂŤAS

Por Jeff Bentley

27 de diciembre del 2020

Mucha de la producción agrícola termina en los rellenos sanitarios urbanos, pero con un poco de esfuerzo y unas ideas claras, los municipios pueden reciclar su basura orgánica, como vi hace poco en Tiquipaya, una pequeña ciudad en el eje metropolitano de Cochabamba, Bolivia.

Hace más de diez años, la compostera municipal de Tiquipaya ha convertido parte de su basura en un excelente fertilizante orgánico. El Ing. Denis Sánchez dirige la compostera, y obviamente le encanta su trabajo y el mostrar su planta bien ordenada (y libre de moscas) a grupos de ciudadanos.

En la primera parada, la recepción, los camiones basureros y algunos vecinos colaboradores, dejan su basura, las podas del ornato público, flores marchitadas del cementerio, basura del mercado y de casi la mitad de las familias del municipio. En recepción, los trabajadores realizan lo más tedioso, separando los plásticos de los orgánicos. Los restos de la comida son una molestia porque se pudren rápidamente y tienen “algunos microbios muy malos,” como Denis explica.

Denis afirma que el compost adquiere buenos microbios de su entorno. Los microbios buenos huelen bien y el único olor un poco desagradable viene de la basura fresca en recepción. La planta está apenas a cuatro cuadras de la plaza principal, y la alcaldía no toleraría ningún mal olor. En recepción, la basura fresca, la “verde”, se llena mitad-mitad con los desechos “marrones” tales como la hojarasca de los parques urbanos. El mezclarlo era más fácil cuando la compostera tenía una máquina que picaba todas las ramas. La máquina se descompuso hace algunos años, y ahora de vez en cuando traen una oruga que pisotea las ramas para quebrarlas. Los pedazos pequeños entran al compost y las piezas grandes se venden como leña.

Después de la recepción, la mezcla de basura verde y marrón pasa a la sección de “aireación forzada”. El compost necesita aire, que se puede proveer con el volteo, pero es mucho trabajo. En la compostera de Tiquipaya, usan tubería perforada para empujar el aire a cada pila de 40 toneladas de compost. Riegan las pilas una vez a la semana, durante siete semanas, y durante ese tiempo las voltean una vez, para lograr una descomposición pareja.

A las siete semanas, llevan el compost a madurarse, como un vino fino. Hacen montones de compost que se riegan y se voltean cada semana con una máquina mini cargadora. El compost madurado es cernido en un dron rotatorio para sacar cualquier objeto grande. El compost fino se vende al público. La alcaldía fertiliza los parques de Tiquipaya con el compost, así que no tienen que comprar fertilizante. Además, usan el compost como sustrato para producir plantas ornamentales.

Claro que cuesta trabajo. Una limitación es la educación. El mercado municipal tiene basureros separados para plásticos y orgánicos, aunque los usuarios a veces mezclan todo. Tres de las ocho rutas del carro basurero recogen solo residuos orgánicos un día de la semana, y cada vez, Denis manda un funcionario de la planta para hacerle recuerdo a la gente que no incluyan sus plásticos ni sus restos de comida. La educación pública es un esfuerzo constante. De vez en cuando regalan plantas para premiar a los buenos vecinos.

Una segunda limitante es la mano de obra. Aun con maquinaria, el esmerado personal (tres a tiempo completo y cuatro a tiempo parcial, además del Ing. Denis) logra procesar unas 5.5 toneladas de basura por día, de las 40 toneladas que Tiquipaya produce. Con un poco más de espacio, personal, e inversión podrían compostar 20 toneladas.

Denis cuenta que cuesta 312 Bs. ($44) hacer un metro cúbico de compost, lo cual vende por 120 Bs. ($17), una pérdida que se acepta porque “nadie pagaría su costo real.”

La planta se creó con una inversión de 1,734,000 Bs. ($246,000) y tiene un costo anual de mano de obra de 185,000 Bs. ($26,000), financiada por la alcaldía. La compostera ha tenido apoyo financiero y técnico de Cataluña y del Japón.

Parece que los trabajadores municipales disfrutan de su trabajo en la planta. Es trabajo fĂ­sico, pero liviano al aire libre mientras que permite la charla entre colegas.

La ciudad vecina a Tiquipaya, Cochabamba, tiene un problema severo con su relleno sanitario, que ahora está lleno y crece como una torre, mientras los vecinos frecuentemente protestan, bloqueando la entrada a los camiones basureros, hasta que la basura se deja en montículos por toda la ciudad.

Las ciudades tienen que invertir para deshacerse correctamente de su basura. Se puede cobrar impuestos a la gente que genera la basura, incluso a las industrias de los plásticos. Hay que enseñar al público a comprar comida con menos envases plásticos, y cómo reciclar la basura verde en casa. La buena noticia es que las ciudades pueden reciclar gran parte su basura, vendiendo los plásticos y produciendo compost para mejorar el suelo y para reemplazar a los fertilizantes químicos.

Denis piensa en su planta como una escuela, donde otros pueden aprender. De hecho, varias ciudades pequeñas (Sacaba, Vinto, Villazón, y algunas en los valles de Santa Cruz), han construido plantas similares, usando el modelo de Tiquipaya. Denis está dispuesto a compartir sus conocimientos con otra gente interesada, sintiendo mucho orgullo por lo logrado.

Con un poco de inversiĂłn inteligente, una ciudad puede convertir su basura en productos Ăştiles e Ă­tems de trabajo verde, mientras evita los rellenos no sostenibles, que simplemente entierran los nutrientes ganados con tanto esfuerzo por la producciĂłn agrĂ­cola.

Previos relatos en nuestro blog

Reviving soils

Aprender a enseñar

Trash to treasure

Smelling is believing

Offbeat urban fertilizer

Videos relacionados

Organic biofertilizer in liquid and solid form

Buenos microbios para plantas y suelo

Compost from rice straw

Composting to beat striga

Design by Olean webdesign