WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Stuck in the middle September 29th, 2019 by

In my blog, Out of space, I talked about how the energy crisis may make chemical fertilizers unaffordable to farmers in the foreseeable future. Modern agriculture will need to become less dependent on expensive external inputs such as animal feed and fertilizer, and make better use of knowledge of the ecological processes that shape the interplay between soil, nutrients, microorganisms and plants. But whether farming will remain a viable business for European farmers in the next decade, will not only depend on new knowledge.

A recent radio broadcast on Radio 1 mentioned that in Belgium since 1980 two thirds of the farmers have abandoned this profession, with currently only some 30,000 farmers remaining in business. And many see a bleak future. With large corporations and supermarkets keeping the price of commodities at rock bottom, and at times even below the production cost, it comes as no surprise that few young people still see a future in farming. A neighbouring dairy farmer in Belgium told me once that the difference of 1 Euro cent per litre of milk he sells can make or break his year. In 2016, around 30% of French farmers had an income below €350 per month, less than one third of the minimum wage.

One French farmer (often a dairy farmer) commits suicide every two days, according to a survey conducted by the French national public health agency. The suicide rate among Swiss farmers is almost 40% higher than the average for men in rural areas. The reasons include financial worries and inheritance problems related to passing the farm on to their children. The EU farmers’ union said this alarming situation should be addressed immediately, emphasising that the farming community deserves better recognition.

How has it come so far? And is there still time to change the tide?

While reading a book on the history of the Belgian farmers’ organisation, called the Boerenbond (Farmers’ League), I was struck by how deeply engrained our food crisis is and how much history has shaped our agricultural landscape and food crisis.

As the steam engine made it possible to transport food much faster and over longer distances, from 1880 onwards large amounts of cheap food from America, Canada, Russia, India and Australia flooded the European markets. This resulted in a sharp drop in food prices and many farmers were forced to stop or expand, others migrated to Canada, the USA, Argentina, and Brazil.

From the early 1890s Belgian farmers began organising into a cooperative to make group purchases of chemical fertilisers, seed, animal fodder, milking machines and other equipment. Milk adulteration was one dubious strategy some farmers used to make a living.

As early as 1902 the Boerenbond started providing administrative support to its members. Basically, consultants were recruited, subsidised by the Ministry of Agriculture, to keep an eye on the financial books of farmers, and of the quality of their milk. The Ministry also invested in mobile milking schools to teach farm women about dairy and milk processing. Along with milking competitions this boosted the attention to quality and hygiene.

The Boerenbond increasingly tried to bring various regional farmer organisations and milk cooperatives under its wing. In between the two World Wars they had representatives in Parliament, and they had their own oil mills, warehouses, laboratories and animal feed factory (made, for instance from waste chaff from the flax industry). The Boerenbond didn’t risk manufacturing their own chemical fertilizer, but bought shares in some of the large chemical companies. Group marketing, education, social security, credit and insurance were all managed in-house to support its members.

It all seemed so progressive, but by the 1930s, deepened by the stock market crash in 1929, the organisation was in a dire financial situation. After the crash of the potato and milk prices in 1936, the government realised that the Boerenbond was no longer capable of providing all these services, so the government set up its own credit and marketing institutions for milk, grain and horticultural crops.

Shortly after the Second World War, the Marshall Plan provided food aid and contributed to the reconstruction of Europe, under the condition that Western Europe subscribe to international free trade. While economic cooperation and integration gradually took shape, the economic advisors of the Boerenbond pleaded to keep a certain level of national autonomy for matters related to agriculture. But as food and milk production increased, the need for export markets grew and the Boerenbond became a strong advocate of European integration.

In 1958, a year after the European Economic Community was established, member countries developed an agricultural policy meant to guarantee a decent income for farmers. Throughout the 1960s and 1970s, productivity enhancement was considered a priority, but farmers found it hard to keep on investing in restructuring their farms to ever more specialised production units while over-production resulted in falling prices. In reality, farmers had to take larger loans and earned less and less. As in the USA, European farmers were buying more machinery, paying more for inputs, and falling deeper in debt.

In 1984, the European Community introduced production quotas to address the shocking situation of milk lakes and butter mountains. With very narrow profit margins set by a limited number of buyers, many farmers gave up.

For those who remained in business, the quotas lasted for about 30 years. By 2015 dairy farmers again could produce as much as they wanted.

The European Commission thought that this liberalisation would not bring back those lakes and mountains, because there was a growing market from developing countries, including China, and price monitoring had improved. In reality, in an attempt to prop up prices and curb the dairy crisis, Brussels has been buying up milk since 2015.

Stockpiled in warehouses, mainly in France, Germany and Belgium, the sacks of milk powder are a déjà vu of the milk lakes. Milk farmers and traders fear that these stockpiles are dragging down prices, as buyers expect the dried milk lakes to be sold off at any time.

Classical economics is based on the idea of many willing buyers and many willing sellers. In modern Europe there are many regulated farmers, buying agrochemicals, seed and animal feed from a few corporations and selling to just a few buyers. Farmers are forced to take prices for inputs set by large corporations, while prices of raw milk are fixed by supermarkets who have concentrated the power of the market. Whether they buy or sell, farmers are price takers, caught in the middle between monopolistic suppliers and a few powerful buyers. And farmers are paying a high price: input costs rose by 40% between 2000 and 2010.

The EU’s common agricultural policy (CAP) will shortly vote on new amendments including the support to protein crops to reduce dependence on imports (read “GMO soya”), and a mandatory introduction of leguminous crops in the rotation in Good Agricultural Environmental Practices.

While EU policies can contribute to protecting our farmers and our environment, consumers also have a crucial role to play. As consumers we have no idea how the continuous search for cheapest products is putting farmers in a stranglehold. While Fairtrade schemes are a nice thought, in reality all food sold anywhere should be fair for the people who produce it, including our own dairy farmers.

For more than a century, strong farmer organisations such as the Boerenbond have tried to protect farmers’ interests by promoting a model of industrial agriculture. How the Boerenbond will deal with farmers’ hard realities, the complexities of a changing climate, environmental degradation and economic pressure of corporations and supermarkets will determine its future relevance.  

Improved consumer awareness to buy local produce at a fair price, enhanced access to affordable animal feed and policies conducive to environmentally sound family farming will decide whether farmers will be able to survive or be replaced by new smart agriculture that can do without farmers, using machineries and investment funds.

Further reading

Belgische Boerenbond. 1990. 100 jaar Boerenbond in Beeld. 1890-1990. Dir. Eco-BB – S. Minten, Leuven, 199 pp

Ulmer, Karin. 2019. The Common Agricultural Policy of Europe: making farmers in the Global South hungry. In: Who is Paying the Bill. Report published by SDG Watch Europe, pp. 21-30. https://www.sdgwatcheurope.org/documents/2019/08/whos-paying-the-bill.pdf/

IPES-Food. 2019. Towards a Common Food Policy for the EU.
www.ipes-food.org/pages/CommonFoodPolicy  

Related blogs

Out of space

Why people drink cow’s milk

Roundup: ready to move on?

Fighting farmers

What counts in agroecology

From uniformity to diversity

Further viewing

Access Agriculture has a collection of videos for small-scale dairy farmers in developing countries.


Hydroponic fodder ; Pure milk is good milk ; Keeping milk free from antibiotics ;  Managing cattle ticks; Taking milk to the collection center ; Keeping milk clean and fresh ;  Hand milking of dairy cows; Herbal medicines against mastitis ; Making rennet ; Making fresh cheese ; Making yoghurt at home

Roundup: ready to move on? August 25th, 2019 by

At our local garden shop, in northeast Belgium, I recently overheard a conversation between the shopkeeper and a young customer, who asked about Roundup®. Since glyphosate, the active ingredient in the herbicide, was banned in Belgium for home use (see note below), a new glyphosate-free Roundup is now aggressively promoted in garden centres. The original Roundup can only be used for professional farming, so the shopkeeper told the customer that her husband is continuously asked to go and spray people’s ornamental home gardens. Even chemical habits can be hard to kick.

When it is my turn at the counter (I am looking for organic chicken feed), I tell the shopkeeper that I just returned from an international conference where American professors revealed how various ingredients of Roundup can be related to male infertility, cancer, Alzheimer and at least 40 other human diseases. She took in the information without being shocked and countered that many people have since resorted to home-made remedies like vinegar to kill weeds, which she preposterously claimed did much more harm to the soil than commercial products. Apparently, the people who sell chemicals, even at the retail level, can become jaded about their dangers.

Both in developed and developing countries, very few people think it necessary to protect themselves when spraying pesticides. People either cannot read, fail to make the effort to read the label or ignore the risks.

While debates on cause-effect relationship can last for decades (the tobacco lobby successfully denied the carcinogenic effects of tobacco for decades, knowing all the while that smoking was a killer), the scientific presentations at the international conference I attended also revealed the shortcomings of official systems that have been put in place to protect our public health. For one, toxicity trials before new products are released only look at short-time effects, whereas diseases of mice (and humans) often show symptoms after years of chronic exposure, as the toxins build up in the body. Equally important, official tests are only done on the active ingredient, not on the full product as it is sold and used.

Protected by intellectual property rights, companies are not obliged to reveal and list the ingredients of the inert material that makes up the bulk of herbicides and pesticides. Laboratory tests showed that one of the ingredients in Roundup is arsenic, which is at least 1000 times more toxic than glyphosate in itself. In short, the glyphosate-free Roundup is still as toxic as before, only it does not show in official tests.

The sad irony is that while the owner of the garden shop is busy spraying people’s gardens with Roundup, the government of Belgium spent millions of Euros to protect those same people, by cleaning the soil from the arsenic factory in Reppel, which was closed in 1971. Although scientific evidence was available that the soil and groundwater were heavily polluted with arsenic, zinc and other heavy metals, it took more than 30 years before the site was cleaned up, and apparently more work is still required.

Environmental damage, including pollution, soil erosion and biodiversity loss are hard to measure in simple economic terms. As Jeff mentioned in last week’s blog, environmental costs are often seen as “externalities” and not considered when calculating the cost:benefit of farms. This has given conventional farming an unfair advantage over organic or agroecological farming.

Although the narrow focus on a single active ingredient, such as glyphosate, may have been good to trigger a public debate around food safety and the danger of corporate interests in our food system, a more holistic approach to crop protection and food production is required that takes into account these externalities.

Managing weeds is a key challenge for farmers across the globe. While mulching, crop rotation, intercropping and green manures are all options, additional weeding may be required—often by appropriate, small machines. Alternatives to herbicides do exist. For commercial (conventional and organic) farmers affordable mechanical weeding technologies, based on precision technology, would make a huge difference.

For instance, the food processing industry has benefitted a lot from optic food sorting machines. In a fraction of a second, a stone the size of a pea can be removed from millions of peas. With a simple mobile app called PlantNet I can take a photo of any plant which immediately tells me what plant it is, even if I only have the leaves at hand and the plant is not yet flowering.

Despite what the industry wants to make us believe, farmers do not need herbicides. If countries are serious about public health, more research is needed to support non-chemical food production. Agricultural robots are getting better. In the near future it would be possible to engineer a wheeled robot that could systematically drive over a field, scanning for weeds, and eliminating them mechanically, even within crop rows.

If governments would invest more in alternatives to chemical agriculture and organise nation-wide campaigns (as they have done for decades to inform people of other health risks, such as smoking, and drinking and driving), farmers, gardeners and shopkeepers (like the lady near my village) would become more aware of the dangers of herbicides and more open to promoting and using alternatives.

As I walked out of the village garden shop without my organic chicken feed (she did not have it in stock for lack of demand), I realized that shopkeepers are happy to sell what people ask for, if enough people ask for it. I hope one day to go back and find them selling better tools for controlling weeds.

Further reading

Defarge, N., Spiroux de VendĂ´mois, J. and SĂ©ralini, G.E. 2018. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicology Reports 5, 156-163.

First International Conference on Agroecology Transforming Agriculture & Food Systems in Africa: Reducing Synthetic Pesticides and Fertilizers by Scaling up Agroecology and Promoting Ecological Organic Trade. 2019, Nairobi, Kenya. https://www.worldfoodpreservationcenterpesticidecongress.com/

HLPE. 2019. Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by The High Level Panel of Experts on Food Security and Nutrition. www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_Reports/HLPE-Report-14_EN.pdf

IPES-Food. 2016. From uniformity to diversity: a paradigm shift from industrial agriculture to diversified agroecological systems. International Panel of Experts on Sustainable Food systems. www.ipes-food.org

Related videos

Effective weed management in rice

Rotary weeder

Over 140 farmer training videos on organic agriculture can be found on the Access Agriculture video-sharing platform:  Organic agriculture

Related blogs

From uniformity to diversity

Stop erosion

What counts in agroecology

Out of space July 28th, 2019 by

Celebrating 50 years after landing on the moon, a series of weekly TV broadcasts nicely illustrates the spirit of the time. One interview with a man on a New York City street drew my particular attention. The interview showed why so many people supported the NASA programme: “We have screwed up our planet, so if we could find another planet where we can live, we can avoid making the same mistakes.”

History has shown over and over again how the urge to colonise other places has been a response to the declining productivity of the local resource base. In his eye-opening book “Dirt. The Erosion of Civilizations”, Professor David Montgomery from the University of Washington made me better understand the global and local dynamics of land use from a social and historical perspective.

Out of the many examples given in his book, I will focus on the most recent example: the growth of industrial agriculture, as the rate of soil erosion has taken on such a dramatic proportion that it would be a crime against humanity not to invest all of our efforts to curb the trend and ensure food production for the next generations.

The Second World War triggered various changes affecting agriculture. First, the area of land cultivated in the American Great Plains doubled during the war. The increased wheat production made more exports to Europe possible. Already aware of the risks of soil erosion, in 1933 the U.S. government established an elaborate scheme of farm subsidies to support soil conservation, crop diversification, stabilize farm incomes and provide flexible farm credit. Most farmers took loans to buy expensive machinery. Within a decade, farm debt more than doubled while farm income only rose by a third.

After the Second World War, military assembly lines were converted for civilian use, paving the way for a 10-fold increase in the use of tractors. By the 1950s several million tractors were ploughing American fields. On the fragile prairy ecosystem of the Great Plains, soil erosion rapidly took its toll and especially small farmers were hit by the drought in the 1950s. Many farmers were unable to pay back their loans, went bankrupt and moved to cities. The few large farmers who were left increased their farm acreage and grew cash crops to pay off the debt of their labour-saving machinery. By the time the first man had put his foot on the moon, 4 out of 10 American farms had disappeared in favour of large corporate factory farms.

At the same time that the end of the Second World War triggered large-scale mechanization, the use of chemical fertilizer also sharply increased. Ammonia factories used to produce ammunition were converted to produce cheap nitrogen fertilizer. Initial increase in productivity during the Green Revolution stalled and started to decline within two decades. By now the sobering figures indicate that despite the high yielding varieties and abundant chemical inputs, productivity in up to 39% of the area growing maize, rice, wheat and soya bean has stagnated or collapsed. Reliance on purchased annual inputs has increased production costs, which has led in many cases to increased farmer debt, and subsequent farm business failures. At present, agriculture consumes 30% of our oil use. With the rising oil and natural gas prices it may soon become too expensive to use these dwindling resources to produce fertilizer. 

Armed with fertilizers, farmers thought that manure was no longer needed to fertilize the land. A decline in organic matter in soils further aggravated the vulnerability of soils to erosion. As people saw the soil as a warehouse full of chemical elements that could be replenished ad libitum to feed crops, they ignored the microorganisms that provided a living bridge between organic matter, soil minerals and plants. Microorganisms do not have chlorophyll to do photosynthesis, like plants do, and require organic matter to feed on.

A 1995 review reported that each year 12 million hectares of arable land are lost due to soil erosion and land degradation. This is 1% of the available arable soil, per year. The only three regions in the world with good (loess) soil for agriculture are the American Midwest, northern Europe and northern China. Today, about a third of China’s total cultivated area is seriously eroded by wind and water.

While the plough has been the universal symbol of agriculture for centuries, people have begun to understand the devastating effect of ploughing on soil erosion. By the early 2000s, already 60% of farmland in Canada and the U.S.A. were managed with conservation tillage (leaving at least 30% of the field covered with crop residues) or no-till methods. In most other parts of the world, including Europe, ploughing is still common practice and living hedges as windbreaks against erosion are still too often seen as hindrance for large-scale field operations.

In temperate climates, ploughing gradually depletes the soil of organic matter and it may take a century to lose 10 centimetres of top soil. This slow rate of degradation is a curse in disguise, as people may not fully grasp the urgency required to take action. However, in tropical countries the already thinner top soil can be depleted of organic matter and lost to erosion in less than a decade. The introduction of tractor hiring services in West Africa may pose a much higher risk to medium-term food security than climate change, as farmers plough their fields irrespective of the steepness, soil type or cropping system. In Nigeria, soil erosion on cassava-planted hillslopes removes more than two centimetres of top soil per year.

Despite the overwhelming evidence of the devastating effects of conventional agriculture, the bulk of public research and international development aid is still geared around a model that supports export-oriented agriculture that mines the soils, and chemical-based intensification of food production that benefits large corporations. Farm subsidies and other public investments in support of a more agroecological approach to farming are still sadly insufficient, yet a report from The High Level Panel of Experts on Food Security and Nutrition published this month concludes that the short-term costs of creating a level playing field for implementing the principles suggested by agroecology may seem high, but the cost of inaction is likely to be much higher.

With the reserves of oil and natural gas predicted to become depleted before the end of this century, changes to our industrial model of petroleum-based agriculture will happen sooner than we think. And whether we are ready for it is a societal decision. With all attention being drawn to curbing the effects of climate change, governments, development agencies and companies across the world also have a great and urgent responsibility to invest in promoting a more judicious use of what many see as the cheapest resource in agriculture, namely land. We are running out of space and colonising other planets is the least likely option to save our planet from starvation.

Further reading

David R. Montgomery. 2007. Dirt: The Erosion of Civilizations. Berkeley: University of California Press, 285 pp.

HLPE. 2019. Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by The High Level Panel of Experts on Food Security and Nutrition. www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_Reports/HLPE-Report-14_EN.pdf

IPES-Food. 2016. From uniformity to diversity: a paradigm shift from industrial agriculture to diversified agroecological systems. International Panel of Experts on Sustainable Food systems. www.ipes-food.org

Pimentel, D.C., Harvey, C., Resosudarmo, I., Sinclair, K., Kurz, D., M, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R. and Blair, R. 1995. Environmental and Economic Cost of Soil Erosion and Conservation Benefits. Science 267, 1117-23.

Related videos

Over 100 farmer training videos on organic agriculture can be found on the Access Agriculture video-sharing platform:  Organic agriculture

Related blogs

From uniformity to diversity

Fighting farmers

Stop erosion

Let nature guide you

Slow recovery

Wind erosion and the great quinoa disaster

The diesel wheat mills May 5th, 2019 by

The people of Yuraj Molino (“white mill”) live surrounded by wheat fields, in a large valley near the small town of Pocona, Bolivia. As the name suggests, there have been flour mills in Yuraj Molino for some time. But by the late 1970s, customers were complaining of how long it took to grind the wheat; they got tired of waiting all day for their flour. And then millers began to notice that with the warmer, dryer climate, the streams no longer carried as much stream water, to power the mills. Some of the mills closed. Ana and I visited the ruins of a miller’s house, the yard full of weeds, with the mill still there and a calendar for 1984 still on the wall.

Other mills survived. Local miller Juan Torrico showed us his old mill house, with the canal that once brought water from the mountains. In 2001, Juan’s brother Sergio designed a new mill at the mill house. He bought two large, new stones from a master craftsman near Epizana, Cochabamba, who still carves the massive limestone wheels. Sergio bought a diesel engine, and a used truck axel. The brothers built a new mill house and mounted the stones in it, fixed the axel upright below them, and then used a steel rod to connect the axel to the diesel engine, which Sergio put in the next room. This way they kept the diesel smoke and the engine noise out of the mill room. They don’t want the smoke to spoil the delicate flavor of the flour, which people love.

Five or six other mills in the valley are also sited where old water mills used to be, near running water. But most of them are also now powered by diesel motors.

One by one the old water mills around Pocona adapted to diesel, and one or two are still using water power. The change to diesel was gradual and there was never a break in service, never a time when the farmers had no mills to go to. The mills themselves also stayed in the same places. Although the mills were originally sited to be near water, they were also near the wheat fields, and the millers owned the land where their mills were, and they had community ties to the area. So, the diesel mills stayed right where the water mills had been.

There is no research institution providing expertise on how to motorize Bolivian water mills. At some point, the millers themselves had to blend their traditional knowledge with a lot of new information about motors and old truck parts. As always, people in rural areas are constantly creating and making sophisticated adaptations to changing conditions.

The enemies of innovation August 26th, 2018 by

Sometimes even rational people fight innovation, as we learn in this recent book by the late Calestous Juma, a Kenyan scholar who taught at Harvard and who enjoyed the rare distinction of being elected as a fellow of the Royal Society of London and a foreign associate of the US National Academy of Science.

To condense Prof. Juma’s nuanced and complex thesis, there are two good reasons to oppose innovation, and one surprising outcome.

First, early versions of an innovation are often expensive, unwieldy and simply not very good at getting the job done. Thomas Edison’s first electrical wiring relied on noisy generators, was a fire hazard, and accidentally electrocuted 17 New Yorkers to death in two years between 1887 and 1889. These problems were eventually ironed out, but some of the failings of an innovation are never fully addressed. When tractors began to replace horses in the USA in the 1920s, three decades after they were invented by John Froelich in 1892, critics complained that the tractors (and automobiles) were wasteful and that buying, fueling and repairing them would place a financial burden on farmers,

Second, an innovation is opposed by the social network that uses and supports the incumbent technology. Electric lights were competing with a well-entrenched and profitable natural gas industry. Farriers, veterinarians and harness makers relied on horses for steady business and income. Older workers with the skills and experience to use an existing technology may resist an alternative. The Luddites were not a bunch of maniacs who liked to break things; they were skilled weavers in the 19th century who correctly realized that mechanized looms would replace experienced workers with unskilled ones.

Fortunately, the dynamic tension between the old and the new can be as creative as the original invention, refining the timeworn technology or promoting innovative social structures.

For example, margarine was invented in France in 1869 and was being manufactured in the USA by the 1880s. At the time American dairy farmers were poorly organized, but led by the butter factories, they eventually formed the National Dairy Council. This powerful lobby group harassed margarine makers, leading to legislation in five US states which required margarine to be dyed an unappetizing pink. They also spread disinformation, reporting bogus studies that claimed that margarine stunted children’s growth, for example. But nineteenth century butter was not the choice food that we know today; it was often rancid and adulterated with chemicals. Competition with margarine forced butter manufacturers to make a better product. And in the ultimate compromise, some spreads now blend butter and margarine.

In the end margarine’s saving grace was not technical, but social. In the 1940s US margarine makers switched from imported coconut oil to American soybean and cottonseed oil, acquiring farmer allies that allowed them to fend off the big dairy interests and find a permanent place at the table.

In the end, the innovation may never completely defeat the incumbent technology, which may settle into a competitive niche of its own. The gas industry fought electricity with all the imagination it had, creating gas-powered versions of every electrical appliance invented. There was even a gas radio in the 1930s (it had the added advantage of giving off a little extra heat). Electricity never completely replaced natural gas, which still provides heat and energy, but the rivalry lives on in the competition between gas ovens and electric models.

There are some clear lessons here for agricultural scientists, who are often dismayed when farmers do not immediately adopt ideas derived from research. As we learn from the optimistic Prof. Juma: your invention may have potential in the long run, but in the short term it may still have bugs that need to be fixed. Innovations often seek to replace existing technologies that have proven advantages, and are familiar to users; the struggle between old and new can lead to creative solutions.  Specifically, researchers can use farmer field schools (FFS) or other experiences to learn about the farmers’ point of view and work together to adapt innovations to meet their needs and circumstances.

Further reading

Juma, Calestous 2016 Innovation and Its Enemies: Why People Resist New Technologies. Oxford University Press. 416 pp.

Design by Olean webdesign