WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

A common ground March 8th, 2020 by

Farmers need new ideas, and researchers need data. When these two professional groups meet in the framework of collaborative or participatory research, it is often not clear who has to evolve in what direction: do farmers need to learn about research protocols, systematically collecting and analysing data, or do researchers need new ideas from farmers to guide their research agenda?

When grantees of the McKnight Foundation from West Africa recently met in Montpellier, France, at a Community of Practice (COP) meeting to share experiences, it was refreshing to see how this network has over time taken ownership of some key values on doing research with farmers on agroecology, as a way to move towards a more just and equitable food system with care for the people and the planet.

Out of the more than 60 people from farmer organisations, NGOs, research institutes and universities from Mali, Burkina Faso and Niger, I was glad to run into some old friends. Ali Maman Aminou is a farmer and director of the federation of farmer unions in Maradi (FUMA Gaskiya), one of the main farmer organisations in Niger.

In 2011, Aminou was one of the twelve people we trained during a 2-week intensive workshop on making quality farmer-to-farmer training videos. Ever since, Aminou has been using video in his interactions with the growing number of members, now some 18,000. The series of 10 videos on integrated striga and soil fertility management that were developed with ICRISAT and its partners were all translated into Hausa, which made it an ideal tool to trigger lively discussions with farming communities. Striga is a parasitic weed that attaches its roots to the roots of cereal crops, as such depriving the crop from the water and nutrients it needs.

“During one of the evenings that we showed the videos,” Aminou says, “one of the farmers spoke out and told he liked the videos, but that they had another technology to fight striga that was also efficient.” Aminou listened intently as the man went on to explain that farmers mix their millet seed with the powdery substance found around the seeds of the néré, a common tree across West Africa. When farmers sow millet, the néré powder apparently inhibits the striga seeds in the soil from germinating.

“This is amazing,” I told Aminou. “It would be great if you could turn this into a training video.” At that stage, it became apparent how much farmers and researchers had already begun to interact as equal players. Aminou swiftly turned to Salifou Nouhou Jangorzo, a lecturer from the University of Maradi in Niger, who had joined our discussion and said: “We need to find out more about this practice. We need all the details of how farmers do this.” Professor Salifou looked surprised at first; he had never heard of this practice before, but after 5 minutes of discussing with Aminou he was convinced. It turns out that he is planning a survey on a labour-saving weeding technology and so he decided on the spot that he would add some questions about managing striga with néré to his survey.

Farmer-to-farmer training videos, like the ones in the striga series, trigger farmers to experiment with new ideas. They also give farmers confidence to openly share their real-life experiences, knowledge and practices. Through a functional network these ideas can find their way back to researchers. In a progressive and collaborative research network, communication is not an end-product in itself, as Aminou has shown, but it feeds into a life of learning to make agriculture more resilient, profitable and responsive to farmers’ needs.

Finding a common ground between researchers and farmers does not happen overnight, it needs a concerted and long-term effort.

Note

The scientific name of the néré tree is Parkia biglobosa, also known as the African locust bean.

Acknowledgement

We greatly appreciate the endeavours and commitment of the Collaborative Crop Research Programme (CCRP) supported by the McKnight Foundation.

Farmer training videos

The videos on striga and on more than 200 other topics are freely downloadable from the Access Agriculture video platform www.accessagriculture.org

Related blogs

Social innovations triggered by videos: Evidence from Mali

Fighting striga and improving soil fertility with videos in Mali

Killing the vampire flower

Version française

Un terrain d’entente

Les agriculteurs ont besoin de nouvelles idĂ©es et les chercheurs ont besoin de donnĂ©es. Lorsque ces deux groupes professionnels se rencontrent dans le cadre d’une recherche collaborative ou participative, il est souvent difficile de savoir qui doit Ă©voluer dans quelle direction : les agriculteurs ont-ils besoin de connaĂ®tre les protocoles de recherche, de collecter et d’analyser systĂ©matiquement les donnĂ©es, ou les chercheurs ont-ils besoin de nouvelles idĂ©es de la part des agriculteurs pour orienter leur programme de recherche ?

Lorsque les projets financĂ©s par la Fondation McKnight en Afrique de l’Ouest se sont rĂ©cemment rencontrĂ©s Ă  Montpellier, en France, lors de la rĂ©union de comitĂ© de pratique (CoP) pour un Ă©change d’expĂ©riences, il Ă©tait intĂ©ressant de voir comment ce rĂ©seau s’est appropriĂ©, au fil du temps, certaines valeurs clĂ©s sur la recherche avec les agriculteurs en matière d’agroĂ©cologie comme moyen d’Ă©voluer vers un système alimentaire plus juste et plus Ă©quitable, soucieux des populations et de la planète.

Sur plus de 60 personnes issues d’organisations de producteurs, d’ONG, d’instituts de recherche et d’universitĂ©s du Mali, du Burkina Faso et du Niger, j’ai Ă©tĂ© heureux de rencontrer de vieux amis. Ali Maman Aminou est agriculteur et directeur de la fĂ©dĂ©ration des unions de producteurs de Maradi (FUMA Gaskiya), l’une des principales organisations paysannes du Niger.

En 2011, Aminou Ă©tait parmi les douze personnes que nous avons formĂ©es lors d’un atelier intensif de deux semaines sur la rĂ©alisation de vidĂ©os de formation de qualitĂ© paysan Ă  paysan. Depuis, Aminou utilise les vidĂ©os dans ses interactions avec le nombre croissant de membres de l’organisation, qui s’Ă©lève aujourd’hui Ă  environ 18 000 personnes. La sĂ©rie de 10 vidĂ©os sur la gestion intĂ©grĂ©e du striga et de la fertilitĂ© des sols, dĂ©veloppĂ©e avec l’ICRISAT et ses partenaires, a Ă©tĂ© traduite en Haoussa, ce qui rend l’outil idĂ©al pour susciter de vives discussions avec les communautĂ©s agricoles. Le striga est une mauvaise herbe parasite qui attache ses racines aux racines des cultures cĂ©rĂ©alières, privant ainsi la culture de l’eau et des nutriments dont elle a besoin.

“Lors d’une soirĂ©e oĂą nous avons montrĂ© les vidĂ©os”, raconte Aminou, “un des agriculteurs a pris la parole et a dit qu’il aimait les vidĂ©os, mais qu’ils avaient une autre technologie pour lutter contre le striga qui Ă©tait aussi efficace”. Aminou a Ă©coutĂ© attentivement comment les agriculteurs mĂ©langent leurs graines de millet avec la substance poudreuse qui se trouve autour des graines du nĂ©rĂ©, un arbre commun dans toute l’Afrique de l’Ouest. Lorsque les agriculteurs sèment du millet, la poudre de nĂ©rĂ© empĂŞche apparemment la germination des graines de striga dans le sol.

“C’est incroyable”, ai-je dit Ă  Aminou. “Ce serait gĂ©nial si vous pouviez en faire une vidĂ©o de formation.” Ă€ ce stade, il est apparu clairement que les agriculteurs et les chercheurs avaient dĂ©jĂ  commencĂ© Ă  interagir en tant qu’acteurs Ă©gaux. Aminou s’Ă©tait rapidement tournĂ© vers Salifou Nouhou Jangorzo, un professeur de l’UniversitĂ© de Maradi au Niger, qui s’Ă©tait joint Ă  notre discussion et a dĂ©clarĂ© “Nous devons en savoir plus sur cette pratique. Nous avons besoin de tous les dĂ©tails sur la façon dont les agriculteurs font cela “. Le professeur Salifou a d’abord eu l’air surpris ; il n’avait jamais entendu parler de cette pratique auparavant, mais après 5 minutes de discussion avec Aminou, il Ă©tait convaincu. Il s’avère qu’il prĂ©voit d’effectuer une enquĂŞte sur une technologie de dĂ©sherbage permettant d’Ă©conomiser la main-d’Ĺ“uvre et il a donc dĂ©cidĂ© sur-le-champ d’ajouter Ă  son enquĂŞte quelques questions sur la gestion de la striga avec la poudre de nĂ©rĂ©.

Les vidĂ©os de formation paysan Ă  paysan, comme celles de la sĂ©rie sur le striga, incitent les agriculteurs Ă  expĂ©rimenter de nouvelles idĂ©es. Elles donnent Ă©galement aux agriculteurs la confiance nĂ©cessaire pour partager ouvertement leurs expĂ©riences, leurs connaissances et leurs pratiques rĂ©elles de la vie. Grâce Ă  un rĂ©seau fonctionnel, ces idĂ©es peuvent ĂŞtre transmises aux chercheurs. Dans un rĂ©seau de recherche progressive et collaborative, la communication n’est pas un produit final en soi, comme l’a montrĂ© Aminou, mais elle alimente une vie d’apprentissage pour rendre l’agriculture plus rĂ©sistante, plus rentable et plus sensible aux besoins des agriculteurs.

Trouver un terrain d’entente entre chercheurs et agriculteurs ne se fait pas du jour au lendemain, il faut un effort concertĂ© et Ă  long terme.

Note :

Le nom scientifique du néré est Parkia biglobosa, également connu sous le nom de caroubier Africain.

Remerciements

Nous apprĂ©cions grandement les efforts et l’engagement du Programme de recherche collaborative sur les cultures (CCRP) soutenu par la Fondation McKnight.

Vidéos de formation des agriculteurs

Les vidéos sur le striga et sur plus de 200 autres sujets sont téléchargeables gratuitement sur la plateforme vidéo Access Agriculture www.accessagriculture.org/fr

Wicked seed January 5th, 2020 by

A recent story in The Economist (28 September 2019, page 18) highlights the low maize yields in Africa, and urges for greater use of hybrid maize seed. The Economist also has harsh words for NGOs: “African governments have mostly ignored the arguments from some charities, that old-fashioned farming is best and that wicked, profit-seeking seed firms should be barred.”

This caricature is misleading in two ways: many NGOs promote modern seed; and seed companies have more serious enemies than any “charity”.

Cassava is a big staple food in Africa, like maize. Unlike maize, which is planted using true seed, cassava is propagated with stem cuttings. Seed companies rarely sell stems or other vegetative planting material, even for major crops, other than potato. This is mainly for practical reasons; cuttings, vines and roots are bulky, and perishable. Farmers usually trade for cassava stems, get them from friends for free, or buy them from producers or traders.

Donor-funded projects, such as UPOCA and the Great Lakes Cassava Initiative, have also played an important part in making cassava planting material available, worked closely with NGOs to distribute the stems of new, disease-resistant varieties of cassava to farmers in various African countries. This progressive and modern system is neither old-fashioned nor wicked.

It’s not just cassava where such initiatives have helped make planting material available.  In Kenya, public research, like the 3G Seed Strategy, supported the production of high-quality seed potatoes (not true seed, but the small tubers that farmers plant). The project purposefully channeled the production and sale of the little seed potatoes through private companies and commercial farms, to promote sustainable business.

The real enemies of private seed companies include crooks who sell fake seed. To its credit, The Economist did mention counterfeit seed as a problem, but it is worse than the newspaper let on. In a visit to Premier Seed, a Nigerian company, I was impressed by their expertise and competence. They had a professional plant breeder, a tidy lab growing maize seedlings in rows of dishes, and an orderly warehouse stacked with bags of seed. I never heard Premier or other Nigerian seed enterprises complain about NGOs or “charities”.  The real problem was counterfeit seed. Criminals would buy cheap maize grain in the market, dye it to make it look like treated seed, and package it in bags printed to look like those of a real company. Farmers only realized they’d been sold a dud at harvest time. Counterfeit seed smeared the good name of the legitimate companies, whose packaging had been copied.

Life is difficult for seed companies trying to survive, especially the smaller ones. Even when the Nigerian government buys large amounts of seed from private companies to distribute to smallholders, as it does from time to time, there’s a twist. The government can be slow to pay its bills, with the result that a small company’s capital cash flow is blocked and capital is tied up for a year or more. Bigger firms with deeper pockets can more easily wait to be paid.

Few NGOs argue that old-fashioned farming is best. Most promote a sensible blend of tradition and innovation in agricultural practices and respect the pioneering.

There is a reason why seed companies may be seen as wicked. As Paul and colleagues recently explained in two videos (one from Guatemala and one from Malawi), some seed laws threaten farmers’ right to use their own seed.

African seed enterprises do have real problems, but “charities” are not among them. Governments should help national seed companies by arresting the fake seed sellers, and paying for seed on time. Farmers have a right to keep their own seed, but they need modern seed as well. NGOs and research centers often work together to provide such seed, especially for crops that private companies ignore.  

Further reading

For Nigerian seed enterprises see:

Bentley, Jeffery W., Olupomi Ajayi and Kehinde Adelugba 2011 “Nigeria: Clustered Seed Companies,” pp. 38-64. In, P. Van Mele, J.W. Bentley & R. Guéi (eds.) African Seed Enterprises: Sowing the Seeds of Food Security. Wallingford, UK: CABI. 236 pp.

For projects in Africa that have promoted modern seed of cassava, potatoes (and other crops) see:

Andrade-Piedra, Jorge, Jeffery W. Bentley, Conny Almekinders, Kim Jacobsen, Stephen Walsh, and Graham Thiele (eds.) 2016. Case Studies of Roots, Tubers and Bananas Seed Systems. CGIAR Research Program on Roots, Tubers and Bananas (RTB), Lima: RTB Working Paper No. 2016-3. ISSN 2309-6586. 244 p.

Watch the videos

Farmers’ rights to seed – Guatemala

Farmers’ rights to seed – Malawi

And this one on the benefits of good, commercial cassava stems

Quality cassava planting material

The problem with water hyacinth November 17th, 2019 by

The Pantanal wetland, shared by Bolivia and Brazil, is the size of a small sea. In the Pantanal it rains for six months, followed by a half year drought. During the rainy season the rivers overflow their banks, creating a seemingly endless sheet of shallow water reaching to the horizon. In the dry season the water retreats to the river courses. There are few trees in the Pantanal, but there are dense stands of a delicate-looking purple flower, the water hyacinth.

In the twentieth century, gardeners innocently spread the water hyacinth to Asia, Africa and elsewhere. Water hyacinth has striking blue flowers and was used to adorn ornamental fountains. But it escaped and was soon clogging lakes, ponds and municipal water supplies.

Water hyacinth is such a survivor that you can drain ponds, let the plants dry out and burn them – then watch them grow again when the pond is refilled. It’s not surprising that control options are limited, particularly in open water, such as lakes and rivers.

The plants can be hand removed, by people willing to do heavy labor in the mud, cutting and dragging water hyacinth to the shore. Even this drudgery only works if you repeat it every year.

When the water hyacinth is removed, people tend to leave it in heaps at the edge of the water, where it is unsightly and gets in the way.

I recently saw another solution for water hyacinth in Benin, in West Africa. At Songhai, a training center in Porto Novo, they harvest water hyacinth, chop it, mix it with manure and use it to make methane (biogas) for cooking. Songhai also keeps a large tank of methane to run an electrical generator when the power is out.

Making biogas isn’t for everyone, as we saw in a previous blog. The Moreno family in Peru has trained people for years to make biogas from guinea pig manure, but few if any of the trainees later made biogas at home. For this to happen you need to buy equipment, provide labor, and pay close attention to managing the microorganisms that ferment the organic matter and give off the gas.

I liked the Songhai method because they don’t just remove the water hyacinth. They treat it like raw material and they make something with it.  But I wondered if using it to make biogas was profitable. A more detailed study is needed to gauge its potential to make money. The Songhai solution has one key advantage: the water hyacinth does not need to be dried, a plus because the big heaps of flesh plants hold retain a lot of water.

Water hyacinth is a water thief in some of the thirstier parts of the world. Finding uses for it may help to defray the costs of weeding it out.

Related blog story

The guinea pig solution

The juice mobile

Harsh and healthy

Floating vegetable gardens

Videos

Learn how to use water hyacinth to make a floating garden

Floating vegetable gardens

Learn how to make biogas

Zero-grazing and biogas

Scientific name

Water hyacinth is Eichhornia crassipes.

Stuck in the middle September 29th, 2019 by

In my blog, Out of space, I talked about how the energy crisis may make chemical fertilizers unaffordable to farmers in the foreseeable future. Modern agriculture will need to become less dependent on expensive external inputs such as animal feed and fertilizer, and make better use of knowledge of the ecological processes that shape the interplay between soil, nutrients, microorganisms and plants. But whether farming will remain a viable business for European farmers in the next decade, will not only depend on new knowledge.

A recent radio broadcast on Radio 1 mentioned that in Belgium since 1980 two thirds of the farmers have abandoned this profession, with currently only some 30,000 farmers remaining in business. And many see a bleak future. With large corporations and supermarkets keeping the price of commodities at rock bottom, and at times even below the production cost, it comes as no surprise that few young people still see a future in farming. A neighbouring dairy farmer in Belgium told me once that the difference of 1 Euro cent per litre of milk he sells can make or break his year. In 2016, around 30% of French farmers had an income below €350 per month, less than one third of the minimum wage.

One French farmer (often a dairy farmer) commits suicide every two days, according to a survey conducted by the French national public health agency. The suicide rate among Swiss farmers is almost 40% higher than the average for men in rural areas. The reasons include financial worries and inheritance problems related to passing the farm on to their children. The EU farmers’ union said this alarming situation should be addressed immediately, emphasising that the farming community deserves better recognition.

How has it come so far? And is there still time to change the tide?

While reading a book on the history of the Belgian farmers’ organisation, called the Boerenbond (Farmers’ League), I was struck by how deeply engrained our food crisis is and how much history has shaped our agricultural landscape and food crisis.

As the steam engine made it possible to transport food much faster and over longer distances, from 1880 onwards large amounts of cheap food from America, Canada, Russia, India and Australia flooded the European markets. This resulted in a sharp drop in food prices and many farmers were forced to stop or expand, others migrated to Canada, the USA, Argentina, and Brazil.

From the early 1890s Belgian farmers began organising into a cooperative to make group purchases of chemical fertilisers, seed, animal fodder, milking machines and other equipment. Milk adulteration was one dubious strategy some farmers used to make a living.

As early as 1902 the Boerenbond started providing administrative support to its members. Basically, consultants were recruited, subsidised by the Ministry of Agriculture, to keep an eye on the financial books of farmers, and of the quality of their milk. The Ministry also invested in mobile milking schools to teach farm women about dairy and milk processing. Along with milking competitions this boosted the attention to quality and hygiene.

The Boerenbond increasingly tried to bring various regional farmer organisations and milk cooperatives under its wing. In between the two World Wars they had representatives in Parliament, and they had their own oil mills, warehouses, laboratories and animal feed factory (made, for instance from waste chaff from the flax industry). The Boerenbond didn’t risk manufacturing their own chemical fertilizer, but bought shares in some of the large chemical companies. Group marketing, education, social security, credit and insurance were all managed in-house to support its members.

It all seemed so progressive, but by the 1930s, deepened by the stock market crash in 1929, the organisation was in a dire financial situation. After the crash of the potato and milk prices in 1936, the government realised that the Boerenbond was no longer capable of providing all these services, so the government set up its own credit and marketing institutions for milk, grain and horticultural crops.

Shortly after the Second World War, the Marshall Plan provided food aid and contributed to the reconstruction of Europe, under the condition that Western Europe subscribe to international free trade. While economic cooperation and integration gradually took shape, the economic advisors of the Boerenbond pleaded to keep a certain level of national autonomy for matters related to agriculture. But as food and milk production increased, the need for export markets grew and the Boerenbond became a strong advocate of European integration.

In 1958, a year after the European Economic Community was established, member countries developed an agricultural policy meant to guarantee a decent income for farmers. Throughout the 1960s and 1970s, productivity enhancement was considered a priority, but farmers found it hard to keep on investing in restructuring their farms to ever more specialised production units while over-production resulted in falling prices. In reality, farmers had to take larger loans and earned less and less. As in the USA, European farmers were buying more machinery, paying more for inputs, and falling deeper in debt.

In 1984, the European Community introduced production quotas to address the shocking situation of milk lakes and butter mountains. With very narrow profit margins set by a limited number of buyers, many farmers gave up.

For those who remained in business, the quotas lasted for about 30 years. By 2015 dairy farmers again could produce as much as they wanted.

The European Commission thought that this liberalisation would not bring back those lakes and mountains, because there was a growing market from developing countries, including China, and price monitoring had improved. In reality, in an attempt to prop up prices and curb the dairy crisis, Brussels has been buying up milk since 2015.

Stockpiled in warehouses, mainly in France, Germany and Belgium, the sacks of milk powder are a déjà vu of the milk lakes. Milk farmers and traders fear that these stockpiles are dragging down prices, as buyers expect the dried milk lakes to be sold off at any time.

Classical economics is based on the idea of many willing buyers and many willing sellers. In modern Europe there are many regulated farmers, buying agrochemicals, seed and animal feed from a few corporations and selling to just a few buyers. Farmers are forced to take prices for inputs set by large corporations, while prices of raw milk are fixed by supermarkets who have concentrated the power of the market. Whether they buy or sell, farmers are price takers, caught in the middle between monopolistic suppliers and a few powerful buyers. And farmers are paying a high price: input costs rose by 40% between 2000 and 2010.

The EU’s common agricultural policy (CAP) will shortly vote on new amendments including the support to protein crops to reduce dependence on imports (read “GMO soya”), and a mandatory introduction of leguminous crops in the rotation in Good Agricultural Environmental Practices.

While EU policies can contribute to protecting our farmers and our environment, consumers also have a crucial role to play. As consumers we have no idea how the continuous search for cheapest products is putting farmers in a stranglehold. While Fairtrade schemes are a nice thought, in reality all food sold anywhere should be fair for the people who produce it, including our own dairy farmers.

For more than a century, strong farmer organisations such as the Boerenbond have tried to protect farmers’ interests by promoting a model of industrial agriculture. How the Boerenbond will deal with farmers’ hard realities, the complexities of a changing climate, environmental degradation and economic pressure of corporations and supermarkets will determine its future relevance.  

Improved consumer awareness to buy local produce at a fair price, enhanced access to affordable animal feed and policies conducive to environmentally sound family farming will decide whether farmers will be able to survive or be replaced by new smart agriculture that can do without farmers, using machineries and investment funds.

Further reading

Belgische Boerenbond. 1990. 100 jaar Boerenbond in Beeld. 1890-1990. Dir. Eco-BB – S. Minten, Leuven, 199 pp

Ulmer, Karin. 2019. The Common Agricultural Policy of Europe: making farmers in the Global South hungry. In: Who is Paying the Bill. Report published by SDG Watch Europe, pp. 21-30. https://www.sdgwatcheurope.org/documents/2019/08/whos-paying-the-bill.pdf/

IPES-Food. 2019. Towards a Common Food Policy for the EU.
www.ipes-food.org/pages/CommonFoodPolicy  

Related blogs

Out of space

Why people drink cow’s milk

Roundup: ready to move on?

Fighting farmers

What counts in agroecology

From uniformity to diversity

Further viewing

Access Agriculture has a collection of videos for small-scale dairy farmers in developing countries.


Hydroponic fodder ; Pure milk is good milk ; Keeping milk free from antibiotics ;  Managing cattle ticks; Taking milk to the collection center ; Keeping milk clean and fresh ;  Hand milking of dairy cows; Herbal medicines against mastitis ; Making rennet ; Making fresh cheese ; Making yoghurt at home

Out of space July 28th, 2019 by

Celebrating 50 years after landing on the moon, a series of weekly TV broadcasts nicely illustrates the spirit of the time. One interview with a man on a New York City street drew my particular attention. The interview showed why so many people supported the NASA programme: “We have screwed up our planet, so if we could find another planet where we can live, we can avoid making the same mistakes.”

History has shown over and over again how the urge to colonise other places has been a response to the declining productivity of the local resource base. In his eye-opening book “Dirt. The Erosion of Civilizations”, Professor David Montgomery from the University of Washington made me better understand the global and local dynamics of land use from a social and historical perspective.

Out of the many examples given in his book, I will focus on the most recent example: the growth of industrial agriculture, as the rate of soil erosion has taken on such a dramatic proportion that it would be a crime against humanity not to invest all of our efforts to curb the trend and ensure food production for the next generations.

The Second World War triggered various changes affecting agriculture. First, the area of land cultivated in the American Great Plains doubled during the war. The increased wheat production made more exports to Europe possible. Already aware of the risks of soil erosion, in 1933 the U.S. government established an elaborate scheme of farm subsidies to support soil conservation, crop diversification, stabilize farm incomes and provide flexible farm credit. Most farmers took loans to buy expensive machinery. Within a decade, farm debt more than doubled while farm income only rose by a third.

After the Second World War, military assembly lines were converted for civilian use, paving the way for a 10-fold increase in the use of tractors. By the 1950s several million tractors were ploughing American fields. On the fragile prairy ecosystem of the Great Plains, soil erosion rapidly took its toll and especially small farmers were hit by the drought in the 1950s. Many farmers were unable to pay back their loans, went bankrupt and moved to cities. The few large farmers who were left increased their farm acreage and grew cash crops to pay off the debt of their labour-saving machinery. By the time the first man had put his foot on the moon, 4 out of 10 American farms had disappeared in favour of large corporate factory farms.

At the same time that the end of the Second World War triggered large-scale mechanization, the use of chemical fertilizer also sharply increased. Ammonia factories used to produce ammunition were converted to produce cheap nitrogen fertilizer. Initial increase in productivity during the Green Revolution stalled and started to decline within two decades. By now the sobering figures indicate that despite the high yielding varieties and abundant chemical inputs, productivity in up to 39% of the area growing maize, rice, wheat and soya bean has stagnated or collapsed. Reliance on purchased annual inputs has increased production costs, which has led in many cases to increased farmer debt, and subsequent farm business failures. At present, agriculture consumes 30% of our oil use. With the rising oil and natural gas prices it may soon become too expensive to use these dwindling resources to produce fertilizer. 

Armed with fertilizers, farmers thought that manure was no longer needed to fertilize the land. A decline in organic matter in soils further aggravated the vulnerability of soils to erosion. As people saw the soil as a warehouse full of chemical elements that could be replenished ad libitum to feed crops, they ignored the microorganisms that provided a living bridge between organic matter, soil minerals and plants. Microorganisms do not have chlorophyll to do photosynthesis, like plants do, and require organic matter to feed on.

A 1995 review reported that each year 12 million hectares of arable land are lost due to soil erosion and land degradation. This is 1% of the available arable soil, per year. The only three regions in the world with good (loess) soil for agriculture are the American Midwest, northern Europe and northern China. Today, about a third of China’s total cultivated area is seriously eroded by wind and water.

While the plough has been the universal symbol of agriculture for centuries, people have begun to understand the devastating effect of ploughing on soil erosion. By the early 2000s, already 60% of farmland in Canada and the U.S.A. were managed with conservation tillage (leaving at least 30% of the field covered with crop residues) or no-till methods. In most other parts of the world, including Europe, ploughing is still common practice and living hedges as windbreaks against erosion are still too often seen as hindrance for large-scale field operations.

In temperate climates, ploughing gradually depletes the soil of organic matter and it may take a century to lose 10 centimetres of top soil. This slow rate of degradation is a curse in disguise, as people may not fully grasp the urgency required to take action. However, in tropical countries the already thinner top soil can be depleted of organic matter and lost to erosion in less than a decade. The introduction of tractor hiring services in West Africa may pose a much higher risk to medium-term food security than climate change, as farmers plough their fields irrespective of the steepness, soil type or cropping system. In Nigeria, soil erosion on cassava-planted hillslopes removes more than two centimetres of top soil per year.

Despite the overwhelming evidence of the devastating effects of conventional agriculture, the bulk of public research and international development aid is still geared around a model that supports export-oriented agriculture that mines the soils, and chemical-based intensification of food production that benefits large corporations. Farm subsidies and other public investments in support of a more agroecological approach to farming are still sadly insufficient, yet a report from The High Level Panel of Experts on Food Security and Nutrition published this month concludes that the short-term costs of creating a level playing field for implementing the principles suggested by agroecology may seem high, but the cost of inaction is likely to be much higher.

With the reserves of oil and natural gas predicted to become depleted before the end of this century, changes to our industrial model of petroleum-based agriculture will happen sooner than we think. And whether we are ready for it is a societal decision. With all attention being drawn to curbing the effects of climate change, governments, development agencies and companies across the world also have a great and urgent responsibility to invest in promoting a more judicious use of what many see as the cheapest resource in agriculture, namely land. We are running out of space and colonising other planets is the least likely option to save our planet from starvation.

Further reading

David R. Montgomery. 2007. Dirt: The Erosion of Civilizations. Berkeley: University of California Press, 285 pp.

HLPE. 2019. Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by The High Level Panel of Experts on Food Security and Nutrition. www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_Reports/HLPE-Report-14_EN.pdf

IPES-Food. 2016. From uniformity to diversity: a paradigm shift from industrial agriculture to diversified agroecological systems. International Panel of Experts on Sustainable Food systems. www.ipes-food.org

Pimentel, D.C., Harvey, C., Resosudarmo, I., Sinclair, K., Kurz, D., M, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R. and Blair, R. 1995. Environmental and Economic Cost of Soil Erosion and Conservation Benefits. Science 267, 1117-23.

Related videos

Over 100 farmer training videos on organic agriculture can be found on the Access Agriculture video-sharing platform:  Organic agriculture

Related blogs

From uniformity to diversity

Fighting farmers

Stop erosion

Let nature guide you

Slow recovery

Wind erosion and the great quinoa disaster

Design by Olean webdesign