WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Khipu: A story tied in knots September 27th, 2020 by

Vea la versión en español a continuación

Writing was linked to farming from the time of the first scribes, when Sumerian accountants made wedge-shaped marks in wet clay tablets to keep track of trade in grain and livestock. These numbers and symbols were first used around 5,000 BC as a simple notational system for counting sheep and jars of olive oil, eventually evolving into true writing by at least 3,500 BC as shown by recorded hymns and myths. Original writing systems were rare: only the Chinese and the Mesoamericans invented writing independently of the Sumerians.

All writing systems use a flat surface, and until factories made cheap paper in the nineteenth century, material to write on was a limitation. Clay was bulky. Stone was hard. Papyrus was expensive. Parchments from animal skins were so valuable that old ones were often scraped clean to write something new; the old text was often still visible and called a palimpsest. Buddhist monks in Sri Lanka took the trouble to write scriptures on palm leaves, painstakingly arranged in books, while rare Sanskrit manuscripts survive on birch bark.

High in the Andes, the Inka state was using its own system for recording data, based on a completely different medium: knotted twine, a technique that had been evolving since at least the time of the Wari Empire (450-1000 AD), long before the Inka (1400-1533). The multilingual empire of the Inka reached from Ecuador to Chile, with millions of subjects. Conquered communities paid tax to the empire, as textiles, and as maize and freeze-dried potatoes kept in storehouses (qollqa) and as a one-year labor turn every seven years (mit’a).

To tabulate all of these obligations, the empire used the khipu, knots on a string. The khipu maker (khipu kamayoq, or knot-master) started with long central cord, with secondary and tertiary twine fanning out from it like branches of a tree. Each string told a story. Meaning was distinguished by type of fiber (cotton vs llama hair), whether it was twisted left or right, by the type of knot, by a hundred different colors of twine and by the position of the knots.

Conquered nobles were forced to send their sons to live in the capital city, Cusco, where the boys took a four-year course on Inka myth and history, and on the official language (Quechua). Two years of their education were devoted to a study of the khipu.

The khipu was accurate enough to record the census data of a whole province, the soldiers of an army, or tax obligations. Knot-masters also used the khipus to help memorize and recite myths and narratives.

The Spanish conquistadores understood that khipus stored data accurately, and had them dictated and transcribed as sources of Inka history. Khipus were even allowed as evidence in colonial courts, where the litigants would argue over the ownership of land or titles, or sue for reimbursement for foodstuffs supplied to Spanish soldiers, as recorded in the knotted strings.

Knowledge of how to make a khipu died out a generation after the conquest, but Harvard anthropologist, Gary Urton, a specialist in the khipus, argues that they were not an adding machine (as some thought), nor were they true writing. They were however, a superb mnemonic device, perfectly accurate for recording exact numbers in the hundreds of thousands.

Moderately simple khipus could be interpreted on their own, without memorizing the content. The Inka organized a network of runners radiating out from Cusco across the realm. Each messenger (chaski) would run for about 20 km, before relaying his information to the next courier. A team could cover as much as 240 km a day, but perhaps 150 chaskis were needed to run from Quito to Cusco, some 2900 km. To avoid garbling their message entirely, each chaski handed the next one a khipu, which travelled independently of its maker, and must have been capable of bearing meaning alone.

I wonder what would have happened if the khipus had evolved for a much longer time? Given a few more centuries, would they have evolved into a full writing system to record human language, not with marks on a flat surface, but in three dimensions? It would have been a truly unique writing system, unlike any other the world has used.

Further reading

Urton´s study of the khipus is discussed at length in:

D’Altroy, Terence N. 2015. The Incas. New York: Wiley Blackwell. 547 pp.

Photo credit

Khipu on display at the Museo Larco, in Lima. Photo by Claus Ableiter.

Related blog stories

Stored crops of the Inka

Feeding the ancient Andean state

Feeding the Inca empire

Inka Raqay, up to the underworld

DESENREDANDO LA HISTORIA DEL KHIPU

Por Jeff Bentley, 27 de septiembre del 2020

La escritura estuvo vinculada a la agricultura desde los tiempos de los primeros escribas, cuando los contadores sumerios hacían marcas en forma de cuña en tablillas de arcilla húmeda para llevar la cuenta del comercio de granos y ganado. Estos números y símbolos se usaron por primera vez alrededor del 5.000 a.C. como un simple sistema de anotación para contar ovejas y cántaros de aceite de oliva, que con el tiempo evolucionó hasta convertirse en escritura verdadera por lo menos para el 3.500 a.C., como lo demuestran los himnos y mitos registrados. Los sistemas de escritura originales eran pocos: sólo los chinos y los mesoamericanos inventaron la escritura independientemente de los sumerios.

Todos los sistemas de escritura usan una superficie plana, y hasta que las fábricas hacían papel barato en el siglo XIX, el material para escribir era una limitación. La arcilla era voluminosa. La piedra era dura. El papiro era caro. Los pergaminos de pieles de animales eran tan valiosos que los viejos a menudo se raspaban para escribir algo nuevo; el texto antiguo era a menudo todavía visible y se llamaba palimpsesto. Los monjes budistas de Sri Lanka se tomaban la molestia de escribir escrituras en hojas de palma, cuidadosamente dispuestas en libros, mientras que raros manuscritos sánscritos sobreviven en corteza de abedul.

En las alturas de los Andes, el estado Inca usaba su propio sistema de registro de datos, basado en un medio completamente diferente: el hilo anudado, una técnica que había estado evolucionando desde por lo menos la época del Imperio Wari (450-1000 d.C.), mucho antes del Inka (1400-1533). El imperio multilingüe del Inca llegó desde Ecuador hasta Chile, con millones de súbditos. Las comunidades conquistadas pagaban impuestos al imperio, en forma de textiles, maíz y chuño guardados en almacenes (qollqa) y como un turno de trabajo de un año cada siete años (mit’a).

Para tabular todas estas obligaciones, el imperio usaba el khipu, nudos en una cuerda. El entendido en la materia, el khipu kamayoq, o maestro de nudos, comenzó con un largo cordón central, con cuerdas secundarias y terciarias que se abrían en abanico como las ramas de un árbol. Cada cuerda contaba una historia. El significado se distinguía por el tipo de fibra (algodón vs pelo de llama), si se retorcía a la izquierda o a la derecha, por el tipo de nudo, por cien colores diferentes de hilo y por la posición de los nudos.

Los nobles conquistados eran obligados a enviar a sus hijos a vivir en la ciudad capital, Cusco, donde los muchachos tomaban un curso de cuatro años sobre el mito y la historia del Inca, y sobre el idioma oficial (el quechua). Dos años de su educación se dedicaron al estudio del khipu.

El khipu era lo suficientemente preciso como para registrar los datos del censo de toda una provincia, los soldados de un ejército, o los impuestos. Los maestros de nudos también usaban los khipus para ayudar a memorizar y recitar mitos e historias.

Los conquistadores españoles entendieron que los khipus guardaban datos con precisión, y los hicieron dictar para transcribirlos como fuentes de la historia de los incas. Los khipus fueron incluso permitidos como evidencia en las cortes coloniales, donde los litigantes discutían quién era el dueño de tal terreno o título, o demandaban el reembolso de los alimentos suministrados a los soldados españoles, según lo registrado en las cuerdas anudadas.

El conocimiento de cómo hacer un khipu se extinguió una generación después de la conquista, pero el antropólogo de Harvard, Gary Urton, especialista en los khipus, argumenta que no eran una máquina de sumar (como algunos pensaban), ni tampoco eran redacción. Sin embargo, eran un magnífico dispositivo mnemotécnico, perfectamente preciso para registrar números exactos en los cientos de miles.

Los khipus moderadamente simples podían ser interpretados por sí mismos, sin memorizar el contenido. Los Incas organizaron una red de corredores que irradiaban desde Cusco a través del reino. Cada mensajero (chaski) correría durante unos 20 km, antes de transmitir su información al siguiente mensajero. Un equipo podía cubrir hasta 240 km al día, pero tal vez se necesitaban 150 chaskis para correr de Quito a Cusco, unos 2900 km. Para evitar tergiversar su mensaje por completo, cada chaski entregó al siguiente un khipu, que viajó solito, sin su creador, y debe haber sido capaz de llevar el significado por sí solo.

Me pregunto qué habría pasado si los khipus hubieran evolucionado durante mucho más tiempo. Dados unos pocos siglos más ¿habría evolucionado hacia un sistema de escritura completo para registrar el lenguaje humano, no con marcas en una superficie plana, sino en tres dimensiones? Habría sido un sistema de escritura verdaderamente único, como ningún otro que el mundo haya usado.

Para leer más

El estudio de Urton de los khipus está ampliamente descrito en:

D’Altroy, Terence N. 2015. The Incas. Nueva York: Wiley Blackwell. 547 pp.

Crédito de la foto

Khipu exhibido en el Museo Larco, en Lima. Foto por Claus Ableiter.

Relatos relacionados del blog

Stored crops of the Inka

Feeding the ancient Andean state

Alimentando al Imperio Incaico

Inka Raqay, up to the underworld

Building a better fruit fly trap August 16th, 2020 by

The Mediterranean fruit fly is a worthy enemy. This pest, also known as the medfly, is widespread over the tropics, attacking and spoiling oranges, mangos and many other fruits. Each female can lay 200 eggs in her brief lifetime—allowing rapid population growth. The medfly damages so much high value fruit, that many people would like to eradicate it entirely.

The medfly has inspired some bizarre responses, such as spraying suburban Los Angeles with Malathion (insecticide) in the 1980s. Then there is the sterile male technique, which has been used from South America to South Africa to the US citrus belt, where billion of the flies are reared in labs, and treated with enough nuclear radiation to make the males sterile. These hapless males are then dropped from airplanes to mate with wild females, who then have no offspring. These programs to eradicate fruit flies over all of Guatemala, for example) are often described as successful, cost-effective and environmentally friendly. They are also large, expensive and highly technical affairs.

Low technology has also been tried. In Bolivia, the soda pop bottle trap has been around for perhaps 20 years, although it has not been widely adopted. You take a plastic drink bottle, punch some fly-sized holes in the side, pour in half a cup of orange juice and hang the bottle from an orchard tree, about shoulder height. The flies come for the juice, fly into the hole, but usually can’t find their way out of the bottle again and drown in the juice.

It’s fine in theory, but when I saw the traps being used in the field, the farmers had quickly given up on them, allowing the orange juice to decay to a black rot. The farmers had tried a trap or two and abandoned the idea. The traps may have needed some further tweaking.

Our personal battle with the medfly began three years ago, when we couldn’t get them out of our guava tree. Entomologist Luis Crespo told us that the flies love guava so much that peach growers have to cut down their guava trees as a first step to managing the pest (The best knowledge is local and scientific). But Luis kindly gave us a pheromone trap, which attracts flies with a sexual scent lure. The flies land on the trap’s sticky surface and die.

Pheromones typically trap one particular species of fly, but we had several, and by then the soil around our guava tree was full of pupating and highly fertile fruit flies. We reluctantly pruned our guava so it wouldn’t bear fruit, but by last year we were getting fruit fly larvae in our tomatoes and even in our avocados, (not a major fruit fly host).

The war was on. We loathed the thought of fruit flies in our avocados, and this was our last chance to stamp out the fly. We uprooted all our tomatoes. Ana and her dad made dozens of traps. Even a technology made from a pop bottle can evolve. We had seen improved models displayed by students at the local fair sponsored by the agricultural college.

You can make a better trap by painting a yellow stripe around the entry holes. Fruit flies are attracted to the color yellow. Take two bottles and make a T-shaped trap. As the flies ascend from the juice to the top of the bottle, they fly into the second bottle and cannot find their way out again. During the mild winter, we may have two to four flies in each pop bottle trap, while the old traps made from a single bottle would catch one or two medflies.

It seemed like a waste to squeeze fresh juice for flies, but we learned with experience that even when the orange juice was a month old, the fruit flies still swarmed to it because they are attracted to fermenting fruits and vegetables.

Traps might also work in a commercial orchard, if you could get hundreds of pop bottles. People are starting to manufacture yellow traps and there are alternative baits (like chicha, a local, low-alcohol brew, which is already fermented and easier to get than orange juice). In spite of our improvements, one has to attack fruit flies with several weapons at once. Our traps are better for monitoring than for total fruit fly control. If not for the Covid lockdown, we would buy some low-toxic insecticide to make more lethal food traps. And we won’t know until our next avocado crop comes in if we have eradicated our fruit flies or not, but at least we have a better fly trap.

Scientific name

The Mediterranean fruit fly is Ceratitis capitata, but other fruit fly genera in Bolivia include Anastrepha and Bactrocera.

Related blog story

Guardians of the mango

Related videos

Killing fruit flies with food baits

Weaver ants against fruit flies

Collecting fallen fruit against fruit flies

Integrated approach against fruit flies

Further reading

Enkerlin, W. R., J. M. Gutiérrez Ruelas, R. Pantaleon, C. Soto Litera, A. Villaseñor Cortés, J. L. Zavala López, D. Orozco Dávila et al. 2017 The Moscamed Regional Programme: Review of a Success Story of Area‐Wide Sterile Insect Technique Application. Entomologia Experimentalis et Applicata 164(3):188-203.

Validating local knowledge July 26th, 2020 by

Vea la versión en español a continuación

Paul and I have written earlier stories in this blog about the yapuchiris, expert farmer-researcher-extensionists on the semi-arid, high plains of Bolivia. At 4000 meters above sea level (over 13,000 feet), seasoned farmers know how to observe plants and animals, clouds and stars, to predict the weather, especially to answer the Big Question on their minds: when will the rains start, so I can plant my crop?

All of the yapuchiris know some traditional ways of predicting the weather. Some yapuchiris also write their observations on a special chart they have designed with their agronomist colleagues at Prosuco, an organization in La Paz. The chart, called a Pachagrama, allows the yapuchiris to record the weather each day of the year, just by penciling in a few dots, so they can see if their predictions come true, and how the rains, frosts and hail affect their crops.

It can be daunting to prove the value of local knowledge, but it is worth trying.

Eleodoro Baldivieso is an agronomist with Prosuco, which has spent much of the past year studying the results of the Pachagrama weather-tracking charts. As he explained to me recently, Prosuco took four complete Pachagramas (each one filled out over seven years) containing 42 cases; each case is a field observed over a single season by one of the yapuchiris. Comparing the predicted weather with the recorded weather allowed Prosuco to see if the Pachagramas had helped to manage risk, mainly by planting a couple of weeks early, on time, or two weeks late.

Frost, hail and unpredictable rainfall are the three main weather risks to the potato and quinoa crops on the Altiplano. In October, a little rain falls, hopefully enough to plant a crop, followed by more rain in the following months. Average annual rainfall is only 800 mm (about 30 inches) in the northern Altiplano, and a dry year can destroy the crop.

For the 42 cases the study compared the yapuchiri’s judgement on the harvest (poor, regular, or good) with extreme weather events (like frost), and the planting date (early, middle or late) to see if variations in the planting date (based on weather predictions) helped to avoid losses and bring in a harvest.

The study found that crops planted two weeks apart can suffer damage at different growth stages of the plant. For example, problems with rainfall are especially risky soon after potatoes are planted, affecting crops planted early and mid-season. Frost is more of a risk for early potatoes at the start of the season, and for late potatoes when they are flowering. Hail is devastating when it falls as the mid and late planted potatoes are flowering.

The yapuchiris are often able to accurately predict frost, hail, and rainfall patterns months in advance. Scientific meteorology does a good job predicting such weather a few days away, but not several months in advance. When you plant your potatoes, modern forecasts cannot tell you what the weather will be like when the crop is flowering. Forecasting the weather in a challenging environment is helpful, at least some of the time. Planting two weeks early or two weeks late may help farmers take best advantage of the rain, but then expose the crop to frost or hail. Changing the planting dates can help farmers avoid one risk, but not another.

The weather is so complicated that risk can never be completely managed. And because scientific meteorology cannot predict hail and frost months in advance, local knowledge fills a void that science may never replace.

Previous blog stories

Cultivating pride in the Andes

To see the future

Predicting the weather

Watch the video

Recording the weather

Watch the presentation by Eleodoro Baldivieso (in Spanish)

http://andescdp.org/cdp16/seminarios/seminario_4_respondiendo_amenazas_productivas/yapuchiris_Prosuco

Acknowledgement

This work with weather is funded by the McKnight Foundation’s Collaborative Crop Research Program (CCRP). Francisco Condori, Luciano Mamani, Félix Yana and Santos Quispe are the yapuchiris who participated in this research. Thanks to Eleodoro Baldivieso, María Quispe, and Sonia Laura of Prosuco for reading and commenting on a previous version of this story. The first two photos are courtesy of Prosuco.

VALIDANDO LOS CONOCIMIENTOS LOCALES

Por Jeff Bentley

26 de julio del 2020

Paul y yo hemos escrito historias anteriores en este blog sobre los Yapuchiris, expertos agricultores-investigadores y extensionistas en el Altiplano semiárido boliviano. A los 4000 metros sobre el nivel del mar, los agricultores experimentados saben cómo observar plantas y animales, nubes y estrellas para predecir el clima, especialmente para responder a la Gran Pregunta en sus mentes ¿cuándo comenzarán las lluvias para yo pueda sembrar mi chacra?

Todos los Yapuchiris conocen algunas formas tradicionales de predecir el tiempo. Algunos Yapuchiris también apuntan sus observaciones en un cuadro especial que han diseñado con sus colegas, los ingenieros agrónomos de Prosuco, una organización en La Paz. El cuadro, llamado Pachagrama, permite a los Yapuchiris registrar el tiempo cada día del año, con sólo dibujar algunos puntos, para que puedan ver si sus predicciones se hagan realidad y como las lluvias, heladas y granizadas afectan sus cultivos.

Puede ser difícil comprobar ese conocimiento local, pero vale la pena intentarlo.

El Ing. Eleodoro Baldivieso, de Prosuco, ha pasado gran parte del año pasado estudiando los resultados de los Pachagramas. Cómo él me explicó hace poco, Prosuco tomó cuatro Pachagramas completos (de siete campañas agrícolas) y 42 casos; cada caso es una parcela observada durante una campaña por uno de los yapuchiris. El comparar el tiempo previsto con el tiempo registrado permitió a Prosuco ver si los Pachagramas habían ayudado a manejar el riesgo, principalmente mediante la siembra temprana (dos semanas antes), intermedia y tardía (dos semanas después).

Las heladas, el granizo y la lluvia impredecible son los tres principales riesgos meteorológicos para los cultivos de papa y quinua en el Altiplano. En octubre cae un poco de lluvia, con la esperanza de que sea suficiente para sembrar un cultivo, seguida hasta marzo por más lluvia. La precipitación media anual es sólo 800 mm en el Altiplano Norte, y un año seco puede destruir la cosecha, lo mismo que un año con mucha lluvia.

Para los 42 casos el estudio comparó la evaluación del Yapchiri de la cosecha (malo, regular, o bueno) con eventos extremos de tiempo (como heladas), con las fechas de siembra (temprano, mediano, o tarde) para ver si el variar la fecha de siembra (basado en el pronóstico del Yapuchiri) ayudó a evitar pérdidas y lograr una cosecha.

El estudio halló que los cultivos sembrados a dos semanas de diferencia pueden sufrir daño en diferentes etapas de crecimiento da las plantas. Por ejemplo, los problemas con las lluvias son especialmente arriesgados poco después de la siembra de la papa, afectando más a la siembra tempran, a principios y mediados de la temporada. Las heladas son más riesgosas para las papas tempranas al comienzo de la temporada, y para las papas tardías justo en la época de floración. El granizo es devastador para las siembras intermedias y tardías, si la papa está en flor.

Los Yapuchiris a menudo son capaces de predecir con certeza las heladas, el granizo y los patrones de lluvia, con meses de antelación. La meteorología científica a menudo puede predecir ese tiempo a unos pocos días, pero con meses de anticipación. Cuando siembras tu papa, el pronóstico moderno no te puede decir cómo será el tiempo cuando tu cultivo está en flor. Pronosticar el tiempo en un entorno desafiante es útil, al menos parte del tiempo. Sembrar dos semanas antes o dos semanas después puede ayudar a los agricultores a aprovechar mejor la lluvia, pero se expone el cultivo a las heladas o granizo, cuando es más vulnerable. Cambiar las fechas de siembra puede ayudar a los agricultores a evitar uno de los riesgos, pero no siempre a todos.

El clima es tan complicado que el riesgo nunca puede ser manejado completamente. Y debido a que la meteorología científica no puede predecir el granizo y las heladas con meses de anticipación, el conocimiento local llena un vacío que la ciencia tal vez nunca reemplace.

Historias previas del blog

Cultivando orgullo en los Andes

Conocer el futuro

Prediciendo el clima

Ver el video

Hacer un registro del clima

Vea la presentación por Eleodoro Baldivieso (en español)

http://andescdp.org/cdp16/seminarios/seminario_4_respondiendo_amenazas_productivas/yapuchiris_Prosuco

Agradecimiento

Este trabajo con el clima es financiado por el Programa Colaborativo de Investigación sobre Cultivos (CCRP) de la Fundación McKnight. Francisco Condori, Luciano Mamani, Félix Yana y Santos Quispe son los Yapuchiris que participaron en esta investigación. Gracias a Eleodoro Baldivieso, María Quispe, y Sonia Laura de Prosuco por leer y hacer comentaros sobre una versión previa de esta historia. Las primeras dos fotos son cortesía de Prosuco.

Our African ancestors July 5th, 2020 by

Ancient humans migrated out of Africa three times. The first “Out of Africa” as archaeologist Peter Bellwood explains in First Migrants, was about 2 million years ago, long before our own species, Homo sapiens, had emerged. But one of our ancestors, Homo erectus and other, related species entered Southwest Asia from East Africa, and settled in most of tropical and temperate Eurasia. They walked completely upright, made stone tools and hunted and gathered for a living. They had small brains, just 500 to 900 cc, half the size of ours (about 1500 cc). H. erectus also lacked the imagination which inspires humans today. Homo erectus never invented boats to reach the islands and it’s not clear if they could make clothing to keep warm.  

Out of Africa 2 occurred around a million years ago. A second human species migrated from Africa, Homo heidelbergensis, which eventually evolved into the famous Neanderthals of Europe (Homo neanderthalensis). Another branch of Homo heidelbergensis stayed in Africa, where they eventually evolved into Homo sapiens

Out of Africa 3 was sometime between 200,000 and 130,000 years ago, when Homo sapiens, fully modern humans, left Eastern and Southern Africa to conquer the Earth. It was a humble start, with just a few people. Estimates vary, but there may only have been as few as 10,000 breeding adults on the whole planet.

By this time, modern humans almost certainly spoke fully expressive languages: they could no doubt argue, bend the truth, and describe their dreams. We don’t know the words they used to give flight to their thoughts, since their languages are lost in time. Long before people had started to till the earth, from 130,000 to 50,000 years ago, these hunter-gatherers had replaced the Neanderthals, with just a bit of genetic mixing in Eurasia. Humans on most continents derive some two to four percent of their genes from Neanderthals. Modern Africans are largely free of Neanderthal genes.

Homo sapiens settled all of Africa, Eurasia and Australia. Periodic ice ages with lower sea levels created land bridges to Britain, Japan, and many of the islands of Southeast Asia. These modern humans had the imagination to invent boats, and they crossed a stretch of 70 km of open sea to reach New Guinea and Australia.

Before 16,000 years ago people had mastered cold weather survival, almost certainly sewing sophisticated clothing from animal hides, using bone needles that have been found in archaeological sites. By then, some had reached the Eurasian Arctic and crossed the wide Beringia Land Bridge into Alaska. By 11,000 years ago, people were already hunting guanacos in southern South America. People had either walked down the South American coast or taken boats.

Boats were also crucial for reaching the islands of Melanesia, as far east as the Solomon Islands.

So, before humanity ever started to farm, our ancestors had reached almost every inhabitable spot on Earth, with the exception of the Eastern Pacific, which came much later. By 10,000 years ago, modern humans had migrated vast distances from Africa, settling all the continents, from the tropics to the Arctic, except for Antarctica.

By 10,000 years ago our ancestors could paint great art, carve ivory figurines, and invent tailored clothing. Their art included naturalistic representations of animals, but also dots, lines, half-circles and other abstract symbols, suggesting that they also had complex language. When their imagination got the better of their sense of caution, our ancestors would also walk or sail over the horizon.

There were only slight genetic differences between populations. In colder latitudes, where people wore fur suits most of the time, they struggled to synthesize enough vitamin D from the sun. Evolution selected for lighter skin, to help folks get their vitamins. Other than that, white skin doesn’t mean much more than the ability to get a sunburn.

From prehistory we learn that Africa was the cradle of humanity. The early modern humans were creative, thoughtful and widespread yet still relied on hunting and gathering for food and other essentials. Next week I will discuss the second half of First Migrants, which covers early agriculture and the movements of the first farmers.

Further reading

I’ve taken most of this material, especially the outline of prehistoric migrations from:

Bellwood, Peter 2013 First Migrants: Ancient Migration in Global Perspective. Oxford, UK: Wiley-Blackwell.

I’ve also been inspired by some recent books that document how most of humankind’s genetic differences are literally skin deep, while our common humanity goes all the way to our core.

Mukherjee, Siddhartha 2016 The Gene: An Intimate History. Penguin Books: Haryana, India.

Zimmer, Carl 2018 She Has Her Mother’s Laugh: The Powers, Perversions and Potential of Heredity. New York: Dutton. 656 pp.

Achojcha: An Inca vegetable June 21st, 2020 by

Ver la versión en español a continuación

The achojcha is a member of the squash family, green and crunchy and just the right size to fit in the palm of your hand. It grows vigorously as a vine and will smother a tree, if you let it.

The achojcha has an edible skin and is hollow inside, like a balloon, with striking black seeds. It needs little care. It can grow back every year from seeds that were accidently dropped the year before, sprouting with the summer rains, and bearing fruit in the autumn. With irrigation it will grow pretty much year-round.

The book Lost Crops of the Incas estimates that the achojcha was domesticated 9000 years ago. Ancient peoples loved it enough that the pre-Colombian Chimú people of Peru made effigy pots in honor of the little fruit.

We have grown achojcha in our garden in Cochabamba, Bolivia for years, and it’s a popular vegetable with smallholders. The achojcha is high-yielding and sometimes we have a basketful of fruit left on the vine which we can pick during the Andean winter. Even when we abandon the fruit until the end of the season, it simply wilts, and we have yet to see any diseases or insect pests on it. There is only passing reference to a virus in achojcha. I have seen mites on achojcha in the valley of Comarapa, further down the Andes, where pesticide abuse is common.

The achojcha is still a poor person’s food in Bolivia. It is not sold by that bedrock of middle-class cuisine, the supermarket, but you can buy achojcha from street venders. The achojcha does enjoy a certain following. If you search for it on the Internet you will find several recipes. Home cooks in South America sometimes stuff the achojcha with cheese, or with rice and meat, before battering it with egg and frying it. The versatile fruit can be stewed or eaten raw in salads. 

As Paul argued in last week’s blog, farmers should be encouraged to produce for the local market. While governments and donors have a responsibility to invest in generating new knowledge in support of agroecology, a transition towards more sustainable food systems will also require re-educating consumers on the importance of preparing the fruits and vegetables that fit best into the local agroecology.

Further reading

Cárdenas, Manuel 1989. Manual de Plantas Económicas de Bolivia. Cochabamba: Los Amigos del Libro.

National Research Council 1989 Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation. National Academies Press.

.Related blog stories

Eating bricks

Make luffa, not plastic

Forgotten vegetables

Scientific and other names

The achojcha is called caigua in the northern Andes. Its scientific name is Cyclanthera pedata.

A couple of unconvincing English names are “stuffing cucumber” and “slipper gourd.”

Acknowledgement

As always, thanks to Paul Van Mele and Eric Boa for excellent comments on a previous draft. Thanks also to Eric for his stunning picture of the achojcha seeds.

LA ACHOJCHA: HORTALIZA INCA

Por Jeff Bentley, 21 de junio del 2020

La achojcha es un miembro de la familia de las calabazas, verde y crujiente y del tamaño justo para caber en la palma de tu mano. Crece vigorosamente como una parra y ahoga a un árbol, si se lo permites.

La achojcha tiene una cáscara comestible y es hueca por dentro, como un globo, con llamativas semillas negras. Necesita poco cuidado. Puede volver a nacer todos los años a partir de semillas que se cayeron accidentalmente el año anterior, brotando con las lluvias de verano, y dando frutos en el otoño. Con la irrigación crecerá año redondo.

El libro Lost Crops of the Incas estima que la achojcha fue domesticada hace 9000 años. A los antiguos les gustaba tanto que el pueblo chimú precolombino de Perú hizo ollas efigies en honor a la pequeña fruta.

Hemos cultivado achojcha en nuestro huerto en Cochabamba, Bolivia, durante años, y es una hortaliza cotizada entre los campesinos. La achojcha es rendidora y a veces nos queda una canasta llena de fruta en la parra hasta después de cosecharla por meses. Incluso cuando abandonamos la fruta hasta el final de la temporada, simplemente se marchita, y todavía no hemos visto ninguna enfermedad o plaga insectil en ella. Sólo hay una referencia pasajera a un virus en la achojcha. He visto ácaros en la achojcha en el valle de Comarapa, más abajo en los Andes, donde el abuso de pesticidas es común.

La achojcha sigue siendo el alimento de los pobres en Bolivia. No es vendido por ese cimiento de la cocina burguesa, el supermercado, pero puedes comprar achojcha de los puestos en la calle. La achojcha tiene su público. Si lo buscas en Internet encontrarás varias recetas. Los cocineros caseros de Sudamérica a veces rellenan la achojcha con queso, o con arroz y carne, antes de rebozarlo con huevo y freírlo. Esta fruta tan versátil puede entrar a la sopa, o cruda en ensaladas. 

Como Paul argumentó en el blog de la semana pasada, se debe alentar a los agricultores a producir para el mercado local. Si bien los gobiernos y los donantes tienen la responsabilidad de invertir en generar nuevos conocimientos en apoyo de la agroecología, la transición hacia un agro más sostenible también requiere reeducar a los consumidores sobre la importancia de preparar las frutas y verduras que se adapten a la agroecología local.

Para leer más

Cárdenas, Manuel 1989. Manual de Plantas Económicas de Bolivia. Cochabamba: Los Amigos del Libro.

National Research Council 1989 Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation. National Academies Press.

Otros relatos de este blog

Eating bricks

Make luffa, not plastic

Forgotten vegetables

Agradecimiento

Sinónimo y nombres científicos

La achojcha se llama caigua en el norte de los Andes. Su nombre científico es Cyclanthera pedata.

Como siempre, gracias a Paul Van Mele y Eric Boa por sus excelentes comentarios sobre un borrador anterior. Gracias también a Eric por su impresionante imagen de las semillas de achojcha.

Design by Olean webdesign