WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Repurposing farm machinery September 20th, 2020 by

Many farmers in Europe and North America are burdened with debts due to the heavy investments they have made over the years to buy farm machinery. A new tractor easily costs 100,000 Euro or more. New agricultural policies often force farmers to change as well. When environmental policy outlawed the spread of liquid manure on the surface of the field, manufacturers quickly adapted: manure is now directly injected into the soil. But this may oblige farmers to get rid of machinery that still works. What solutions can research offer to repurpose farm equipment? These thoughts have gradually come to my mind, living in a farming village in north-eastern Belgium and observing the various changes.

Farmers creatively adapt in many ways. Our friend, Johan Hons, uses a leek planter to transplant sweet maize seedlings on his organic farm to reduce the need for weeding. Like many farmers, Johan has his own workshop where he adjusts equipment to suit his needs.

American and European farmers see the soaring prices of equipment as one of their key challenges. Besides, equipment has become so complicated and repair is stymied by proprietary software and a lack of available parts. As a response, many farmers are now buying simpler, and much cheaper second-hand tractors from the 1970s and ’80s.

Also, local service providers have repositioned themselves and taken over many of the farm operations. And the fewer local service providers there are, the more pressure they can put on farmers, often charging fees that further eat into farmers’ meagre profit margins. Many machines, like the ones that inject liquid manure into the soil, have become so big that they are often wider than the country lanes, damaging them and forcing cyclists to jump off the road to save their lives whenever these machines roar by.

But there are also positive changes in the development of new machinery, which are not about making them bigger and heavier. Until last year, our local machine provider needed three tractors to collect grass for silage. One tractor raked up the grass and filled a wagon pulled by a second tractor. Meanwhile, a third tractor hauled the grass to the farmstead, to fill the silo, before running back to the field so the second tractor could empty its load. No time was wasted. This year, I noticed a single machine picking up the cut grass. This meant that the tractor then needed to drive to the farm where the silage was made, but to finish this entire field with just one tractor only took an hour longer than with three tractors and drivers, a big savings in labour, machinery and fuel.

Due to tillage and use of agrochemicals, many soils have become depleted of organic matter and soil life. As agricultural policies for decades have supported industrial agriculture, all farmers own their own pesticide spraying equipment. So, will these become obsolete when farming transitions to more sustainable models? Or could pesticide spraying machines be used to spray the soils and crops with Effective Microorganisms or other natural biofertilizers, to bring life back into our soils and boost crop health in a natural way?

To enable the transition to more sustainable farming, appropriate machines will be required. In the Netherlands, Wageningen University & Research (WUR) has been studying intercropping for several years, involving conventional and organic farmers. By growing a variety of crops in narrow strips they were able to attract beneficial insects and slow the spread of crop disease. The researchers also found that yields are similar to those found in monocultures and labour requirements are comparable too. Reading their study, I immediately thought how intercropping would work in a highly mechanised setting. Adjusting machinery will likely be part of the solution.

With the action plan laid out in the European Green Deal, the EU aims to be climate neutral by 2050. Different sectors of society each have a responsibility to make this happen. For agriculture, the ‘Farm to fork strategy’ stipulates that by 2030 pesticide use has to be reduced by 50% and chemical fertilizers by 20% in order to make food systems more sustainable.

Clearly, equipment manufacturers will continue to adjust the design of machinery, but this also comes at a cost. To keep as many farmers in business as possible, some creative thinking will be required on how to strike a balance between supporting industry to innovate and finding ways to repurpose the already available machinery park that farmers have already invested in. European family farmers are ready to adapt, but they are also being run out of business. Policy and research should lend them a hand, by inventing and promoting appropriate small machinery that can be used to serve multiple purposes. 

Related blogs

Fighting farmers

Stuck in the middle

Making a lighter dryer

Inventing a better maize chopper

From Uniformity to Diversity

Reaper madness

Tools of the imagination

Some videos on appropriate machinery

Direct seeded rice in dry conditions

Strip tillage

Rotary weeder

Silage from maize

The clod breaker: a rolling harrow

Read more

More nature in fields through strip cropping. https://weblog.wur.eu/spotlight/more-nature-in-fields-through-strip-cropping/  

The European Green Deal: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en  

Credit: The photo on harvesting an intercrop is from Wageningen University & Research. The bottom photo of intercropped field with flowers is by Fogelina Cuperus.

Flying pest control robots September 13th, 2020 by

My friend Steve Peck is a novelist and a professor of evolutionary ecology, whose work on mathematical models of insect populations led him to the topic of one of his short stories, about a tiny flying robot, modelled after a dragonfly. The robots would cruise the countryside, looking for insect pests, which it killed, while sparing the beneficial insects. The story seemed pretty far-fetched when it was published in 2012.

I recently told the dragonfly robot story to another friend, Keith Andrews, an entomologist with years of experience in pest control in Central America. Keith immediately seized on the robot idea. “How did it run, on photovoltaic cells? Did it collect its prey in a kind of stomach or just kill them?”

The story doesn’t say what powered the dragonflies, just that they snipped off bits of their prey to store in a mechanical stomach, so that researchers could identify the bugs later from their DNA.

Real life dragonflies do hunt and kill other insects, to eat. But once a predatory insect is full it rests. A robot wouldn’t need to pause and digest, and could be programmed to just keep up the slaughter all day.

“A robot would be great for that plague of locusts in Africa,” Keith said. “It wouldn’t have to damage an insect much to disable it. A good zap right between the eyes or even to the thorax or abdomen would put a grasshopper out of business.”

A pest control robot could be instructed to target only the pest species of interest, and not kill anything else. It would be the ultimate ecological pest control strategy.

Since Steve published his story eight years ago, the pieces for a dragonfly robot have started to come together.

For starters, flying robots are getting better.

In The Fate of Food, Amanda Little writes that inventors already have a prototype weed-killing robot called See & Spray, that uses a large set of digital photos to distinguish cotton seedlings from weeds. As a tractor pulls See & Spray across the field, the device spots the weeds and squirts them with herbicide. (No doubt future generations of the technology may invent alternatives to herbicide; the point is that the robot can recognize weeds).

Little also describes a robot, already in commercial use, that kills sea lice, parasites of farmed salmon, by zapping the pests with a laser (in the recent blog The Fate of Food).

If you’re wondering if digital software could work to identify pests on small farms, it’s already being done. Researchers at IITA (International Institute of Tropical Agriculture) in Kenya have invented an app called Nuru (Swahili for “light”) that instantly compares thousands of photos of diseased and healthy plants to distinguish between cassava brown streak disease, cassava mosaic disease and cassava green mite damage. The app is already being tested by 28,000 farmers in Kenya.

Art can inspire technology ahead of its time. Novels fueled the idea of space travel, but engineers made it happen. I can only hope that some young robotics designers will read Steve Peck’s story.

Further Reading

Little, Amanda 2019 The Fate of Food: What We’ll Eat in a Bigger, Hotter, Smarter World. New York: Harmony Books. 340 pp.

Peck, Steven L. 2012 Dragonfly Miscalculations. The Journal of Unlikely Entomology.

RTB 2019 Smarter farming: Using apps to diagnose crop health problems. In RTB 2019 Building for better science. Annual Report 2019. Lima, Peru. CGIAR Research Program on Roots, Tubers and Bananas. Available online at: www.rtb.cgiar.org/2019-annual-report

Hybrid maize and chemical fertilizer fail to end poverty August 23rd, 2020 by

In 2005, Jeffery Sachs, macroeconomist at Columbia University, started the Millennium Villages Project. At 14 sites across Africa, the project intended to end poverty, to pull people above a daily income of $1.25 a day, by investing in health, education and agriculture. Sachs started the first, five-year phase of the project with almost $120 million in donations from a handful of wealthy folks.

As told in Nina Munk’s 2013 book, The Idealist, Sachs was intensely optimistic and sincere. The funding would allow him to try a model to end poverty; he hoped that after some initial success, governments and international agencies would follow with larger investments to end poverty worldwide.

The villages were actually big communities, with an average of about 6,000 residents. In each one, the project was led by an educated, local person who shared Sach’s vision.

Journalist Nina Munk followed Sachs for six years, and also visiting the villages on her own. Munk noticed that money was flowing into the villages, especially as measured by the number of people who built homes with metal roofs, instead of thatch. But Munk and some of the people she interviewed for the book wondered if this relative prosperity would last after the project ended. I wondered too, so I looked for a more recent evaluation of the project, and found one by Sachs himself, and his colleagues, published in 2018, based on surveys in 2015 at the end of the second and last five-year phase of the Millennium Villages Project.

The researchers saw some progress towards the UN’s Millennium goals, especially for malaria, HIV/AIDS and maternal health.

But the study found that the project had made no impact on poverty.

It is a stunning admission, and I admire the team’s honesty. Income in the Millennium Villages had increased a bit, but over the same decade most African economies had slowly improved. By the end of the project, the families in the Millennium Villages were no better off than households in the surrounding communities.

Paradoxically, the study found that the project had had a positive influence on agriculture, defined narrowly as the use of hybrid maize seed and chemical fertilizer, which Sachs and his team had encouraged, subsidized and distributed to the local people.

The use of hybrid maize seed and chemical fertilizer may explain why the project did not end poverty. Expensive seed and fertilizer make farmers dependent on buying these inputs every year. If the rains fail one year, farmers may lose their maize, but if they bought seed and chemical inputs, they may also go into debt for the seed and fertilizer. So, what Sachs’s team thought of as a positive influence may have in fact undermined the potential of agriculture to contribute to poverty reduction.

Agriculture is also too complicated to reduce to simplistic solutions like seed and chemicals. Maize is a major crop in parts of Africa, but not everywhere. As Munk describes for the village of Ruhiira, in southwest Uganda, although farmers did plant the maize seed, and harvest it, they were unfamiliar with the crop. The locals didn’t like to eat maize, had nowhere to store it, and were not connected to grain buyers, making the grain difficult to sell.

Although Sachs was naïve and reductionist about agricultural development, I suspect that he was right about the need for governments and bilateral agencies to make massive investments in health, education and electricity. Governments are now spending trillions of dollars to mitigate the pandemic lockdown.

But for agriculture to help end poverty, mere investment is not enough. How the money is invested also matters. As explained in the report Money Flows, investments in agroecology are needed to build more resilient domestic food systems that could reduce risks, and poverty.

Further reading

Biovision Foundation for Ecological Development & IPES-Food 2020 Money Flows: What Is Holding Back Investment in Agroecological Research for Africa? Biovision Foundation for Ecological Development & International Panel of Experts on Sustainable Food Systems.

Mitchell, Shira, Andrew Gelman, Rebecca Ross, Joyce Chen, Sehrish Bari, Uyen Kim Huynh, Matthew W Harris, Sonia Ehrlich Sachs, Elizabeth A Stuart, Avi Feller, Susanna Makela, Alan M Zaslavsky, Lucy McClellan, Seth Ohemeng-Dapaah, Patricia Namakula, Cheryl A Palm, and Jeffrey D Sachs 2018 The Millennium Villages Project: A retrospective, observational, endline evaluation. Lancet Global Health 6: e500–13.

Munk, Nina 2013 The Idealist: Jeffery Sachs and the Quest to End Poverty. New York: Anchor Books. 260 pp.

The village hunter June 28th, 2020 by

I recently ran into our village hunter, Pol Gielen, which is always a good occasion to get to know the village history a little better, and to learn about the changing challenges of hunters and farmers alike. In our village, Erpekom, in north eastern Belgium, with only 300 odd citizens, Pol Gielen is one of the two people allowed to hunt on the village grounds. The license has been passed on from generation to generation. While hunting in Europe is a centuries-old occupation, it has not always had the same social relevance.

The first hunting laws stem from the time of William the Conqueror, the Norman King who reigned England from 1066 until his death in 1087. A decade earlier, William allied himself with Flanders, now part of Belgium, by marrying Matilda, daughter of Count Baldwin of Flanders. William was a fervent hunter who loved being in the woods, observing animals, yet he despised the common people. A peasant caught hunting could be thrown into prison or, just as likely, publicly executed. For centuries to follow, hunting became a stylized pastime of the aristocracy.

In contemporary Europe, hunting is no longer confined to the rich. While hunting licenses are to ensure that only well-trained persons are allowed to hunt, the right to hunt is also linked to the duty to care for all animals listed in the hunting laws. For various species, such as deer, wild boars, hares and pheasants, hunters and authorities have to develop plans, detailing, how many animals may or must be killed during the hunting season. Some pest species, such as pigeons, can be shot with little restriction.

In an earlier blog, Bullets and birds, I wrote how pigeons can be a real challenge for organic farmers, who do not use seed that the factories coat with chemicals to repel birds, and how local hunters can come to the rescue if need be. My recent encounter with Pol, our village hunter, showed me how changing pesticide regulations in Europe continue to influence the relationships between hunters, farmers and the environment.

In 2018, the European Commission banned three neonicotinoids (synthetic nicotinoids, toxins originally derived from tobacco). The ban covers all field crops, because these pesticides harm domesticated honey bees and wild pollinators. Neonics, as they are commonly called, are often coated onto seeds to protect them from soil pests. These pesticides are systemic, meaning they spread through the plant’s tissue. The toxin eventually reaches pollen and nectar, where it harms pollinators. According to a study by Professor Dave Goulson in the UK, most seeds and flowers marketed as “bee-friendly” at garden centres, supermarkets and DIY centres, like Aldi and Homebase, are contaminated with systemic pesticides. In fact, in his study in 2017 70% of the plants contained neonics commonly including the ones banned for use on flowering crops by the EU. Birds, bees, butterflies, bats and mammals are indiscriminately poisoned when they forage on contaminated plants.

The dramatic decline of bees and other pollinators due to the use of neonics and other pesticides is threatening the sustainability of the global food supply. Of the 100 crop species that provide 90% of global food, 71 are pollinated by bees.

To further reduce the negative impact of agriculture on the environment, more restrictions have been imposed because of mounting evidence that pesticide-coated seed are also harmful to birds, including partridges, a favourite game bird for a thousand years that has now become a rarity. Apart from subsidies for installing and maintaining hedgerows around farmers’ fields to serve as food and nesting habitat for birds, the European Commission recently banned methiocarb, a toxic insecticide used as a bird repellent, often used to coat maize seed.

With the new EU regulations limiting seed coatings, conventional dairy farmers got worried that birds would damage their maize crop, and have begun looking for alternatives. That is the reason why one of our farmer neighbours decided to call upon Pol, the village hunter. It was on his way back from that farmer that I ran into Pol when he said: “Well, the farmer asked me to come and shoot pigeons, but I told him: ‘I would be happy to help you, but where do you want me to hide, you have removed all the hedges in your fields!’”

Regulations to curb the indiscriminate and dangerous use of pesticides on seed and in fields must go hand in hand with other measures, such as promoting hedgerows that fulfil important ecological functions for birds and pollinators. Also, environmentally-friendly alternatives could be further investigated and promoted. Green, innovative technologies, such as clay coating, is likely to become increasingly important. Clay is perceived by insects and birds as soil and offers a natural protection of the seeds. The clay can even be enriched with other natural additives to repel birds and insects.

Hunting has come a long way in the past 1,000 years. No longer the pastime of kings, hunting can be part of an enlightened programme to manage bird pests, without the use of chemicals, while saving the bees.

Further reading

Goulson, Dave. 2017. Pesticides in “Bee-Friendly” flowers. www.sussex.ac.uk/lifesci/goulsonlab/blog/bee-friendly-flowers. Original research describing in detail the pesticides was published in the journal Environmental Pollution, May 2017 and can be found here: www.sciencedirect.com/science/article/pii/S0269749117305158  

Malone, Katy. 2018. Beeware! ‘Bee-friendly’ garden plants can contain bee-harming chemicals. https://www.bumblebeeconservation.org/beeware-bee-friendly-garden-plants-can-contain-bee-harming-chemicals/

Stokstad, Erik. 2018. European Union expands ban of three neonicotinoid pesticides. Science, April 27.

The European Green Deal: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en

Related blogs

Bullets and birds

Banana birds in the bean patch

Birds: farmers’ blessing or curse

From Uniformity to Diversity

The bird cliffs

Related videos

Managing birds in climbing beans

Soya sowing density (this video talks about hunters providing services to farmers in Benin)

Eating bricks June 14th, 2020 by

In Belgium we have an expression: “all Belgians are born with a brick in their stomach”, meaning that all citizens aspire to build their own house someday. But when bricks are literally eaten, something has gone seriously wrong.

Some 25 years ago, during one of my first projects in Sri Lanka, news came out that chilli powder was mixed with ground up bricks. Some crooks were trying to make a dishonest profit. Ground chilli and powdered bricks are of a similar colour and consistency. Few buyers taste the chilli powder when they buy it, and as chilli is typically added to sauces, never eaten straight, a cheating dealer supplying to regional or international markets for customers he would never see again at times could get away with such a scam.  

Fortunately, in Europe we have a long history of food safety standards, regulations and government institutes safeguarding the quality of the food that enters the market and ends up on our plates. But such systems are absent, dysfunctional or just getting started in many developing countries.

Yet many developing countries have an advantage when it comes to food safety: short food chains. Control measures on food safety are less important when one relies on short food chains. In Sri Lanka, for instance, I used to patronize spice gardens where urban people would stock up on black pepper, chilli or cardamom. Over the years the customers would establish a relationship based on trust with the family running the spice garden. Even in the markets, most vendors know their regular customers, and would never risk selling them a fake product. Suppliers are motivated to sell high-quality products to their valuable, steady customers.

I had forgotten about this incidence of adulterated chilli until recently. While reading the book The True History of Chocolate, I was struck by one particular paragraph on food adulteration. Cacao had spread from Latin America to Portuguese, Spanish, English and French colonies across Africa and Asia in the 19th century.

In 1828, the Dutch chemist Coenraad Van Houten took out a patent on a process to make powdered chocolate with a very low fat content. The Industrial Revolution was in full swing and entrepreneurs in England and America established their first companies to make chocolate for the masses. For centuries, chocolate had only been known as a foamy drink, consumed mainly by the royalty, aristocracy and clergy.

Already in 1850, the British medical journal The Lancet mentioned the creation of a health commission for the analysis of foods. According to the journal suspicions about the quality of the mass-produced chocolate proved correct: in 39 out 70 samples, chocolate had been adulterated with red brick powder. Similar results were obtained from samples of chocolate seized in France. The investigations led to the establishment of the British Food and Drug Act of 1860 and the Adulteration of Food Act of 1872.

A similar trend took place in the milk industry.

In Belgium, starting in 1900, machines were deployed to scale up butter production. Just two years later, the Belgian farmers’ organisation, the Boerenbond (Farmers’ League) decided to employ food consultants to check the administration, hygiene and quality of the dairies. In 1908, the Boerenbond established a food laboratory which it deemed necessary to help curb the increase in butter adulteration.

Now, more than a century later, the Covid-19 pandemic has exposed once more the vulnerability of a globalised food system with long supply chains. Slightly more than 50% of all food produced in Belgium is exported, including milk. As the demand from China dropped, this left farmers unable to sell dairy, meat and potatoes. Belgian dairy cooperatives also struggled to have sufficient packaging material, as this relied on imports of certain materials.

Such troubles are triggering people to rethink how to make our food system more sustainable. For a long time, food safety regulations were assumed to be the main pillar of a safe food system, but the pandemic has revealed that the complexity of a global food system makes it prone to breaking down, leaving producers and consumers vulnerable. Over the years, overly rigid food safety standards in Belgium have discouraged farmers from adding value to their own produce and selling it on their farm. Triggered by the crisis, the Belgian Minister for Agriculture, Denis Ducarme, has just reduced the stringency on food safety control for farm-made cheese. More will hopefully be done in the near future to encourage farmers to process and sell food on their farm. In these short food chains, farmers will be motivated to make clean, healthy products.

The food in Europe is reasonably safe and healthy, but Covid-19 has shown us how modern food systems are fragile. Burdensome regulations oppress smallholders until they are not even able to make a cheese for their neighbours. By investing in shorter food chains, we can make our food systems more resilient, and bring back the distinctive flavours of local foods.  Shorter, more adaptable food chains will build trust, while leaving the bricks to those who are building houses.

Further reading

Belgische Boerenbond. 1990. 100 Jaar Boerenbond in Beeld. 1890-1990. Dir. Eco-BB – S. Minten, Leuven, 199 pp.

Sophie D. Coe and Michael D. Coe. 1996. The True History of Chocolate. Thames and Hudson Ltd, London, 280 pp.

Related blogs

Mobile slaughterhouses

Forgotten vegetables

Stuck in the middle

Keep your cows in the family

Related videos

Making chilli powder

Pure milk is good milk

Design by Olean webdesign