WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Earthworms from India to Bolivia March 29th, 2020 by

Vea la versión en español a continuación

A few weeks ago, I met a young Bolivian journalist, Edson RodrĂ­guez, who works on an environmental program at the university (UMSS) television channel in Cochabamba called TVU. He helps to produce a show called Granizo Blanco (white hail), a dramatic name in this part of the Andes, where hail can devastate crops in a moment. The show covers all environmental issues, not just agriculture. For example, the program recently featured mud slides that have destroyed homes, and the impacts of a new metro train system in the valley.

I first met Edson in the field, where he was filming the tree seedling distribution that I wrote about earlier in this blog. Later, I told him about the agroecological videos on Access Agriculture.

Edson wondered if some of the videos on Access Agriculture might be suitable for the TV show. After watching some of the videos, he downloaded one on making compost with earthworms. The video was filmed in India, and it had recently been translated into Spanish, crucial for making videos more widely available. Without a Spanish version it wouldn’t be possible to consider showing a video from Maharashtra in Cochabamba. The two places are physically far apart, but they have much in common, such as a semi-arid climate, and small farms that produce crop residues and other organic waste that can be turned into compost.

Edson asked me to take part in an episode of Granizo Blanco that included a short interview followed by a screening of the compost and earthworm video. He was curious to know why Access Agriculture promotes videos of farmers in one country to show to smallholders elsewhere. I said that the farmers may differ in their skin color, clothing and hair styles, but they are working on similar problems. For example, farmers worldwide are struggling with crops contaminated with aflatoxins, poisons produced by fungi on improperly dried products like peanuts and maize.

I told Edson that farmer learning videos filmed in Bolivia are being used elsewhere. My colleagues and I made a video on managing aflatoxins in groundnuts, originally in Spanish, but since been translated into English, French and various African languages. The same aflatoxin occurs in Bolivia and in Burkina Faso, so African farmers can benefit from experience in South America. In this case the video shows simple ways to reduce aflatoxins in food, using improved drying and storage techniques developed by Bolivian scientists and farmers in Chuquisaca.

“What other kinds of things can Bolivian farmers learn from their peers in other countries?” Edson asked me, as he realized that good ideas can flow in both directions. I explained that soil fertility is a problem in parts of Bolivia and elsewhere; Access Agriculture has videos on cover crops, compost, conservation agriculture and may other ways to improve the soil, all freely available for programs such as Granizo Blanco to screen.

Many older people, especially those who work for governments, feel that videos have to be made in each country, and cannot be shared across borders. This closed vision makes little sense. The same civil servants happily organize and attend international conferences on agriculture and many other topics to share their own ideas across borders. If government functionaries can gain insights from foreign peers, farmers should be able to do so as well.

Fortunately, younger people like Edson are able to see the importance of media, such as learning videos that enable farmers to share knowledge and experience cross-culturally. Smallholders can swap ideas and stimulate innovations as long as the sound track is translated into a language they understand. It costs much less to translate a video than to make one.

Related blog

The right way to distribute trees

Translate to innovate

Aflatoxin videos for farmers

Related videos

Making a vemicompost bed (The earthworm video from India)

Managing aflatoxins in groundnuts during drying and storage

See also the links to soil conservation videos at the end of last week’s story: A revolution for our soil

Acknowledgment

The McKnight Foundation has generously funded many video translations, including the earthworm video, besides the filming of the aflatoxin video and its translation into several languages. For many years, SDC has offered crucial support that enabled Access Agriculture to become a global leader in South-South exchange through quality farmer-to-farmer training videos.

LOMBRICES DE TIERRA DE LA INDIA A BOLIVIA

Por Jeff Bentley 29 de marzo del 2020

Hace unas semanas conocí a un joven periodista boliviano, Edson Rodríguez, que trabaja en un programa de medio ambiente en el canal de televisión, TVU, de la Universidad (UMSS) en Cochabamba. Él ayuda a producir un programa llamado Granizo Blanco, un nombre dramático en esta parte de los Andes, donde el granizo puede arrasar los cultivos en un momento. El programa cubre todos los temas ambientales, no sólo la agricultura. Por ejemplo, el programa recientemente presentó los deslizamientos de mazamorra que han destruido varias casas, y los impactos de un nuevo sistema de tren metropolitano en el valle.

Conocí a Edson por primera vez en el campo, donde él estaba filmando la distribución de plantines de árboles, el tema de un blog previo. Más tarde, le hablé de los videos agroecológicos en Access Agriculture.

Edson se preguntaba si algunos de los videos de Access Agriculture podrían servir para el programa de televisión. Después de ver algunos de los videos, descargó uno sobre cómo hacer abono con lombrices de tierra. El vídeo se filmó en la India y recientemente se había traducido al español, lo que era imprescindible para hacer los vídeos más disponibles. Sin una versión en español sería imposible mostrar un video de Maharashtra en Cochabamba. Los dos lugares están físicamente alejados, pero tienen mucho en común, como un clima semiárido y pequeñas granjas que producen residuos de cultivos y otros desechos orgánicos que pueden convertirse en abono.

Edson me pidió que participara en un episodio de Granizo Blanco que incluía una breve entrevista seguida de una proyección del vídeo de lombricultura. Él quería saber por qué Access Agriculture promueve videos de los agricultores de un país para mostrarlos a los campesinos de otros países. Dije que los agricultores pueden diferir en el color de su piel, su ropa y peinado, pero están trabajando en problemas similares. Por ejemplo, hay agricultores de todo el mundo que luchan con la contaminación de aflatoxinas, venenos producidos por hongos en productos mal secados como el maní y el maíz.

Expliqué que los videos filmados con agricultores en Bolivia se están usando en otros países. Mis colegas y yo hicimos un video sobre el manejo de las aflatoxinas en el maní, originalmente en español, pero luego se ha traducido al inglés, al francés y a varios idiomas africanos. La misma aflatoxina se produce en Bolivia y en Burkina Faso, por lo que los agricultores africanos pueden beneficiarse de la experiencia en América del Sur. En este caso, el vídeo muestra formas sencillas de reducir las aflatoxinas en los alimentos secos, desarrolladas por científicos y agricultores bolivianos en Chuquisaca.

“ÂżQuĂ© otro tipo de cosas pueden aprender los agricultores bolivianos de sus homĂłlogos de otros paĂ­ses?” Edson me preguntĂł, al darse cuenta de que las buenas ideas pueden fluir en ambas direcciones. Le expliquĂ© que la fertilidad del suelo es un problema en algunas partes de Bolivia y que afecta a muchos otros agricultores en otros lugares; Access Agriculture tiene videos sobre cultivos de cobertura, compost, agricultura de conservaciĂłn y muchas otras tĂ©cnicas para mejorar el suelo, todos disponibles gratuitamente para que programas como Granizo Blanco los proyecten.

Muchas personas mayores, especialmente las que trabajan para los gobiernos, consideran que los videos tienen que hacerse en cada país y no pueden compartirse a través de las fronteras. Esta visión cerrada tiene poco sentido. Los mismos funcionarios públicos organizan y asisten con gusto a conferencias internacionales sobre agricultura y diversos temas para compartir sus propias ideas a través de las fronteras. Si los funcionarios del gobierno pueden obtener ideas de sus colegas extranjeros, los agricultores también deberían poder hacerlo.

Afortunadamente, los jóvenes como Edson ven la importancia de los medios de comunicación, como los vídeos, que permiten a los agricultores compartir conocimientos y experiencias entre culturas. Los pequeños agricultores pueden intercambiar ideas y estimular innovaciones siempre que la banda sonora se traduzca a un idioma que entiendan. Cuesta mucho menos traducir un video que hacer uno.

Historias relacionadas del blog

La manera correcta de distribuir los árboles

Translate to innovate

Aflatoxin videos for farmers

Videos relacionados

Hacer una lombricompostera (el video de la lombriz de tierra de la India)

Manejo de aflatoxinas en maní (también disponible en quechua y en aymara)

Vea también los enlaces a los videos de conservación del suelo al final de la historia de la semana pasada: Una revolución para nuestro suelo

Agradecimiento

La Fundación McKnight ha financiado generosamente muchas traducciones de video, incluyendo el video de la lombriz, además de la filmación del video de la aflatoxina y su traducción a varios idiomas. Durante muchos años, la Cosude ha ofrecido un apoyo crucial que ha permitido a Access Agriculture convertirse en un líder mundial en el intercambio Sur-a-Sur a través de vídeos agricultor a agricultor.

Stored crops of the Inka August 11th, 2019 by

Much of what ancient people leave behind is related to farming, as I was reminded on a recent trip to Inka Llajta, the largest Inka site in Bolivia, in Pocona, Cochabamba.

Little is known for sure about Inka Llajta, except that it was built on the far, southeast border of the Inka Empire, which they called Tawantinsuyu. The Inka were often at war, expanding into the territory of their neighbors, so it’s possible that the 30-hectare settlement was built as a garrison. Inka Llajta is built on the bottom of a steep cliff, on a bluff above the river. The spot would have been fairly easy to defend, while a waterfall on the site provided essential water.

Fortunately, the site has recently been cleared of much of its vegetation and it is now easier to see. Although I have been to Inka Llajta several times, thanks to the recent brush removal I was now able to see that ringing the front of the site is a row of storage pits.

Until a generation ago, potatoes were planted mostly in the rainy season. Now there is more irrigation and potatoes can be planted somewhere in Bolivia year-round. But until twenty or thirty years ago, some potatoes were stored in underground pits, where the tubers could be kept for six months or more.

I pointed out the row of pits to our guide, doña Berta, who is from one of the local communities. The pits were not on the tour. They had no sign to label and explain them. Humble agricultural features are easy to ignore.

“These were phinas,” I suggested, using the Quechua word I had learned for potato storage pits.

Doña Berta said that in Pocona, such pits are called “k’ayus,” but she immediately recognized them. “We used to make pits, put straw on the bottom, fill them with potatoes and cover them with earth,” she said, confirming that the pits were for potato storage. She added that the pits can also hold other roots and tubers, such as oca.

Inka Llajta is a grand site. It has one building that was 70 meters long, one of the largest roofed structures in the ancient Americas. But Tawantinsuyu lived by farming, and if we look close enough, we can still see where they kept their potato harvest, just a few steps from the fortified buildings, overlooking the valley below. 

When I first visited Inka Llajta 20 years ago it appeared much the way that the Inka had left it. Since then, the site has acquired a parking lot, a visitor’s center, and now you have to hire a guide (like the good-natured Berta, or one of her 16 colleagues, all from the local area). Inka Llajta is now full of signs offering information, including speculation about the site’s past.

One large block of rooms is labelled as an administrative area, while another was supposedly a “specialist’s area” where astronomers, agricultural specialists and builders gathered to organize their calendar based on the weather and the stars. The signs refer to another building as an aqllawasi, where girls of Tawantinsuyu were trained in weaving and brewing chicha, an alcoholic maize drink. In fact, these rooms could have been used for anything, and everything.

A natural boulder in the center of the large plaza is described as an “altar”, based on tales told by the hacienda workers to Erland Nordenskiöld, the Swedish ethnographer, in 1913.

A small tower near the edge of Inka Llajta has a view up the river, where a sentinel might have looked out for approaching enemies. But a sign says the tower was an astronomic observatory that the Inka used to gaze at the stars and decide when to plant. No explanation tells why being two meters closer to the heavens provides a better view for a stargazer.

As we have seen in earlier blogs, contemporary Andean peoples do look at the stars, but they also observe foxes, lizards, wild plants, cactus, clouds, mountains and use many other indicators to predict the year’s weather. A tower would have been of limited use.

Archaeologists use ethnographic analogies to interpret the past. The function of a structure or an artifact may be understood by comparing it to a similar item used by recent people. For example, it is reasonable to interpret the pits at Inka Llajta as places to store tubers, because rural people living near the site still kept potatoes and oca in similar holes until recently.

When archaeological sites are interpreted for the public, speculation can do more harm than good, fixing ideas in peoples’ minds that are hard to shift when new evidence emerges. As surely as an army marches on its stomach, in past civilizations agriculture made the world go around. Ancient peoples no doubt worshipped their gods and pondered the stars, but they also went about the mundane business of feeding themselves, and at archaeological sites you can still get a glimpse of how they produced and stored their food, if you keep your eyes open.

Further reading

Jesús Lara popularized Inka Llajta in newspaper stories after his 1927 visit. Lara’s description of the site is admirably free of speculation; he debunks the idea that the boulder on the site was an altar. His book can still be read with profit.

Lara, Jesús 1988 Inkallajta—Inkaraqay. Cochabamba: Los Amigos del Libro. 109 pp.

Previous blog stories

Forgetting Inca technology

Let nature guide you

Reading the mole hills

Death of the third flowers

Betting on the weather

Scientific name

Oca is a native Andean tuber crop, Oxalis tuberosa

The diesel wheat mills May 5th, 2019 by

The people of Yuraj Molino (“white mill”) live surrounded by wheat fields, in a large valley near the small town of Pocona, Bolivia. As the name suggests, there have been flour mills in Yuraj Molino for some time. But by the late 1970s, customers were complaining of how long it took to grind the wheat; they got tired of waiting all day for their flour. And then millers began to notice that with the warmer, dryer climate, the streams no longer carried as much stream water, to power the mills. Some of the mills closed. Ana and I visited the ruins of a miller’s house, the yard full of weeds, with the mill still there and a calendar for 1984 still on the wall.

Other mills survived. Local miller Juan Torrico showed us his old mill house, with the canal that once brought water from the mountains. In 2001, Juan’s brother Sergio designed a new mill at the mill house. He bought two large, new stones from a master craftsman near Epizana, Cochabamba, who still carves the massive limestone wheels. Sergio bought a diesel engine, and a used truck axel. The brothers built a new mill house and mounted the stones in it, fixed the axel upright below them, and then used a steel rod to connect the axel to the diesel engine, which Sergio put in the next room. This way they kept the diesel smoke and the engine noise out of the mill room. They don’t want the smoke to spoil the delicate flavor of the flour, which people love.

Five or six other mills in the valley are also sited where old water mills used to be, near running water. But most of them are also now powered by diesel motors.

One by one the old water mills around Pocona adapted to diesel, and one or two are still using water power. The change to diesel was gradual and there was never a break in service, never a time when the farmers had no mills to go to. The mills themselves also stayed in the same places. Although the mills were originally sited to be near water, they were also near the wheat fields, and the millers owned the land where their mills were, and they had community ties to the area. So, the diesel mills stayed right where the water mills had been.

There is no research institution providing expertise on how to motorize Bolivian water mills. At some point, the millers themselves had to blend their traditional knowledge with a lot of new information about motors and old truck parts. As always, people in rural areas are constantly creating and making sophisticated adaptations to changing conditions.

Feeding the Inca Empire November 11th, 2018 by

Vea la versión en español a continuación

The Inca Empire depended on a road system, called the Qhapaq Ă‘an, that linked its four regions from Ecuador to Chile, moving armies, laborers and food. Like beads on a necklace, the Qhapaq Ă‘an was studded with grain silos, called qollqas, where food could be stored.

The largest set of these qollqas is at Cotapachi, near Cochabamba in Bolivia, 1000 km from the ancient Inca capital of Cusco, Peru. Between 1450 AD and 1500 AD, the Inca Empire built 2500 granaries at Cotapachi, on a dry ridge overlooking a small lake in the Cochabamba Valley. According to David Pereira, archaeologist and expert on the qollqas, this site was part of a vast complex, with about 1500 more qollqas on other, nearby hilltops.

Each qollqa is about 2.5 meters in diameter at its stone base and could hold perhaps 4 tons of maize. They were originally about 3 meters tall, with gently tapered cylindrical walls woven from the stems of the ch’illka plant and plastered with mud and roofed with straw of the needle grass.

In 2007, 27 of the qollqas of Cotapachi were reconstructed, so to speak. They were designed by the architect Jorge Obando Stemberg and built by soldiers from the nearby Tumusla Regiment of the Bolivian Army.  These replicas are made from adobe (mud) bricks, but they are kind of graceful in the afternoon sunlight, with the backdrop of the mountains.

Nothing is left of the other silos, except for rows and rows of stone bases.

From Cusco, the Inca could command the granary silos to be filled with maize grown in the green, irrigated fields of Cochabamba. The grain was carried to the garrison that guarded the southeast frontier at Inka Llajta, or it was sent to Cusco via the administrative settlement of Paria, in Oruro, Bolivia. A royal army passing through Cochabamba could provision its soldiers directly with the grain stored in the silos.

The grain was transported on llamas, which thrive on native Andean vegetation, but their slender backs can only carry a light pack of some 25 kg. You would need 160 llamas to haul the grain from one silo. It must have been a marvelous sight when thousands of pack llamas flowed like a river, up the stone slope to Inka Raqay, their first stop on the way to Cusco.

Like the Inka, all ancient states were built on the food and labor wrested from farmers. Some of the arrangements for commandeering and transporting that grain were as impressive as the cities they fed. The bases of grain silos may be humbler than ruined palaces, but it’s important to recognize that civilization is based on agriculture, and that farming does leave its mark on the archaeological record.

Notes

Thanks to David Pereira for sharing his insights about the Inca grain silos at Cotapachi.

The “-s” ending from Spanish is used today for Quechua plurals. In classical Quechua the qollqas would have been called “qollqakuna”.

The Inca, or Inka, was the supreme ruler of a state that was called “Tawantinsuyu,” meaning “all four quarters”.

There were actually more qollqas in the Mantaro Valley, in Peru, than in the Cochabamba Valley, but the silos in Mantaro were spread out over several sites.

Needle grass includes Stipa ichu and related species. It is called paja brava in Spanish, and ichhu in Quechua.

Ch’illka is Baccharis salicifolia.

Further reading

Eeckhout, Peter 2012 “Inca Storage and Accounting Facilities at Pachacamac.” Andean Past 10(1):12.

Gyarmati, János and Carola Condarco CastellĂłn. Circa 2012 “Las ocupaciones prehispánicas tardĂ­as y el centro administrativo inkaico en la Cuenca de Paria, Altiplano de Oruro.”

Earlier blog stories

Inka Raqay, up to the underworld

Making new ruins

The tyrant of the Andes

Related videos

The grain kept at Cotapachi may have been stored for a while, or sent soon after harvest to Cusco. Weevils, moulds and other post-harvest problems have always been a challenge, and still are. For videos on handling the maize harvest on a small farm see:

Managing aflatoxins in maize during drying and storage

Managing aflatoxins in maize before and during harvest

Storing and managing maize in a warehouse

Good storing and conserving maize grain

Good shelling, sorting and drying of maize

Harvesting maize in a good way

ALIMENTANDO AL IMPERIO INCAICO

El Imperio Incaico dependía de un sistema de caminos, llamado el Qhapaq Ñan, que unía sus cuatro regiones desde Ecuador hasta Chile, moviendo ejércitos, trabajadores y alimentos. Como cuentas en un collar, el Qhapaq Ñan estaba tachonado de silos de grano, llamados qollqas, donde se podían almacenar los alimentos.

El conjunto más grande de estas qollqas está en Cotapachi, cerca de Cochabamba en Bolivia, a 1000 km de la antigua capital incaica de Cusco, Perú. Entre 1450 y 1500 AD, el Imperio Incaico construyó 2.500 graneros en Cotapachi, en una cresta seca con vista a un pequeño lago en el Valle de Cochabamba. Según David Pereira, arqueólogo y experto en las qollqas, este sitio formaba parte de un vasto complejo, con cerca de 1500 qollqas más en las otras cimas cercanas.

Cada qollqa medĂ­a unos 2,5 metros de diámetro en su base de piedra y podrĂ­a almacenar unas 4 toneladas de maĂ­z. Originalmente tenĂ­an unos 3 metros de altura, con paredes cilĂ­ndricas suavemente cĂłnicas tejidas a partir de los tallos de la planta ch’illka y estucados con barro y techadas con paja brava.

En el 2007, 27 de los qollqas de Cotapachi fueron reconstruidos. Fueron diseñados por el arquitecto Jorge Obando Stemberg y construidos por soldados del cercano Regimiento de Tumusla del Ejército Boliviano.  Estas réplicas están hechas de adobes, pero son elegantes a la luz de la tarde, con el fondo de la cordillera.

No queda nada de los otros silos, excepto filas y filas de bases de piedra.

Desde Cusco, los incas podían ordenar que los silos se llenaran de maíz cultivado en los verdes campos irrigados de Cochabamba. El grano fue llevado a la guarnición que vigilaba la frontera sureste en Inka Llajta, o fue enviado a Cusco a través del asentamiento administrativo de Paria, en Oruro, Bolivia. Un ejército real que pasaba por Cochabamba podía abastecer directamente a sus soldados con el grano almacenado en los silos.

El grano fue transportado en llamas, que prosperan en la vegetación nativa andina, pero sus esbeltos lomos sólo pueden llevar una mochila ligera de unos 25 kg. Se necesitarían 160 llamas para llevar el grano de un silo. Habrá sido una vista todo un espectáculo ver a los miles de llamas cuando fluyeron como un río, por la ladera de piedra hasta Inka Raqay, su primera parada en el camino a Cusco.

Al igual que el Inka, todos los estados antiguos fueron construidos sobre los alimentos y la mano de obra arrebatada a los agricultores. Algunos de los arreglos para requisar y transportar ese grano eran tan impresionantes como las ciudades a las que alimentaban. Las bases de los silos de granos pueden ser más humildes que los palacios en ruinas, pero es importante reconocer que la civilización se basa en la agricultura, y que la agricultura deja su huella en el registro arqueológico.

Notes

Gracias David Pereira por compartir sus ideas sobre las qollqas de Cotapachi.

El sufijo “-s” del español se usa hoy en día para plurales en quechua. En el quechua clásico las qollqas se habrán llamado “qollqakuna”.

El Inca, o Inka, era el gobernante supremo de un estado que se llamaba “Tawantinsuyu”, que significa “los cuatro cuartos”.

Hay más qollqas en el Valle de Mantaro, en el Perú, que en el Valle de Cochabamba Valley, pero los silos en Mantaro estaban dispersos en varios sitios.

La paja brava incluye Stipa ichu y especies relacionadas. Se llama ichhu en quechua y needle grass en inglés.

Ch’illka es Baccharis salicifolia.

Lectura

Eeckhout, Peter 2012 “Inca Storage and Accounting Facilities at Pachacamac.” Andean Past 10(1):12.

Gyarmati, János y Carola Condarco CastellĂłn. Circa 2012 “Las ocupaciones prehispánicas tardĂ­as y el centro administrativo inkaico en la Cuenca de Paria, Altiplano de Oruro.”

Earlier blog stories

Inka Raqay, up to the underworld

Making new ruins

The tyrant of the Andes

Related videos

El grano guardado en Cotapachi pudo haber sido almacenado por un tiempo, o enviado a Cusco poco después de la cosecha. Los gorgojos, mohos y otros problemas de pos-cosecha siempre han sido un desafío, y lo siguen siendo. Para ver videos sobre el manejo de la cosecha de maíz en una pequeña granja, vea:

Manejo de aflatoxinas en maĂ­z durante el secado y almacenamiento

Manejo de aflatoxinas en el maĂ­z antes y durante la cosecha

Almacenar y manejar el maĂ­z en bodega

Almacenando bien el maĂ­z

Desgranando, seleccionando y secando bien el maĂ­z

Cosechando el maĂ­z bien

Feeding the ancient Andean state June 17th, 2018 by

Early states from Mesopotamia to Mesoamerica still inspire awe with their fine art and architecture. Yet the artists and soldiers who built the states needed to be fed; whatever their other accomplishments, early states were always based on agriculture. In a recent book, James Scott reminds us that early states usually collected their taxes as grain, staple crops grown on a large scale, such as maize, rice, and wheat, which are easy to store. Scott observes that there were no ancient states based on potatoes or other tuber crops. Yet he admits that the Inka were a partial exception. The Inka did have maize, but they depended largely on the potato which is bulky and perishable, making it difficult to collect and store.

This set me thinking. Inspired by Professor Scott’s excellent book, I’d like to explain how tuber crops, and the potato in particular, sustained the Inka state and provided taxes.

First, the Inka state (called Tawantinsuyu) was not an early state, but had co-opted the myths and king lists of a much earlier one, Tiwanaku, which managed an empire that straddled the Andes from the Pacific Coast to the warm valleys of the Amazon Basin. Tiwanaku began as a village (about 1580 BC), but was a state by 133 AD and an empire by 724, lasting until 1187 when it collapsed in a civil war and broke up into smaller chieftainships (señoríos) that were independent until they were later conquered by the Inka.

The capital city of Tiwanaku was built near Lake Titicaca, on the high plains of Bolivia, not far from the border of modern-day Peru. It once housed 100,000 residents and was centered on large stone buildings made of sandstone and andesite, a hard rock quarried in Peru and ferried across Lake Titicaca on ships woven from the reeds that grew in the shallow waters. Tiwanaku was created long before the first Inka, Pachacuti, organized Tawantinsuyu in Cusco starting in 1438. So the Inka’s Tawantinsuyu was a late state, patterned on the much earlier and long-lasting Empire of Tiwanaku.

But in the pre-Colombian Andes, states could collect taxes in potatoes because of an ingenious method of making them light-weight and non-perishable. The Inka and the people of Tiwanaku both knew how to freeze dry potatoes during the winter nights of the high Andes. This preserved potato is called chuño: there are two types, a grey one and a white one, called tunta, which is soaked in water during processing. Both types are as hard and dry as wood. With the water removed, the potato loses weight and can be stored for years. Potatoes were portable once they were transformed into chuño. The Inka taxed their subjects in chuño, as well as maize. Both of these foods were kept in royal storehouses. Chuño was simply soaked in water and boiled to make them edible.

The Inka Empire was large and complex, eventually spanning most of the Andes, from Ecuador to northern Argentina. Like Old World states, the Inka collected taxies in grain: maize in this case. But unlike other classic civilizations, the Inka and an earlier state, Tiwanaku were also largely sustained by a perishable tuber crop, thanks to ingenious recipes for preserving the potato as chuño.

The modern cities of Peru and Bolivia have kept few vestiges of the ancient states that preceded them. But you can still buy chuño in Andean markets and even at upscale supermarkets. The ancient states are gone. Their art works are now curiosities in museums, yet the crops the Inka grew and their imaginative methods of preserving and serving food are still very much alive.

Earlier blog stories

The bad old days

The tyrant of the Andes

Further reading

Finucane, Brian Clifton 2009 “Maize and Sociopolitical Complexity in the Ayacucho Valley, Peru.” Current Anthropology 50(4):533-545.

Haas, Jonathan & Winifred Creamer 2006 “Crucible of Andean Civilization: The Peruvian Coast from 3000 to 1800 BC.” Current Anthropology 47(5):745-775.

Horkheimer, Hans [1973] 2004 Alimentación y Obtención de Alimentos en el Perú Prehispánico. Lima: Instituto Nacional de Cultura. Segunda edición.

Montaño Durán, Patricia 2016 El Imperio de Tiwanaku. Tercera Edición. Cochabamba: Grupo Editorial Kipus. 249 pp.

Scott, James C. 2017 Against the Grain: A Deep History of the Earliest States. New Haven: Yale University Press.

Design by Olean webdesign