WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Roundup: ready to move on? August 25th, 2019 by

At our local garden shop, in northeast Belgium, I recently overheard a conversation between the shopkeeper and a young customer, who asked about Roundup®. Since glyphosate, the active ingredient in the herbicide, was banned in Belgium for home use (see note below), a new glyphosate-free Roundup is now aggressively promoted in garden centres. The original Roundup can only be used for professional farming, so the shopkeeper told the customer that her husband is continuously asked to go and spray people’s ornamental home gardens. Even chemical habits can be hard to kick.

When it is my turn at the counter (I am looking for organic chicken feed), I tell the shopkeeper that I just returned from an international conference where American professors revealed how various ingredients of Roundup can be related to male infertility, cancer, Alzheimer and at least 40 other human diseases. She took in the information without being shocked and countered that many people have since resorted to home-made remedies like vinegar to kill weeds, which she preposterously claimed did much more harm to the soil than commercial products. Apparently, the people who sell chemicals, even at the retail level, can become jaded about their dangers.

Both in developed and developing countries, very few people think it necessary to protect themselves when spraying pesticides. People either cannot read, fail to make the effort to read the label or ignore the risks.

While debates on cause-effect relationship can last for decades (the tobacco lobby successfully denied the carcinogenic effects of tobacco for decades, knowing all the while that smoking was a killer), the scientific presentations at the international conference I attended also revealed the shortcomings of official systems that have been put in place to protect our public health. For one, toxicity trials before new products are released only look at short-time effects, whereas diseases of mice (and humans) often show symptoms after years of chronic exposure, as the toxins build up in the body. Equally important, official tests are only done on the active ingredient, not on the full product as it is sold and used.

Protected by intellectual property rights, companies are not obliged to reveal and list the ingredients of the inert material that makes up the bulk of herbicides and pesticides. Laboratory tests showed that one of the ingredients in Roundup is arsenic, which is at least 1000 times more toxic than glyphosate in itself. In short, the glyphosate-free Roundup is still as toxic as before, only it does not show in official tests.

The sad irony is that while the owner of the garden shop is busy spraying people’s gardens with Roundup, the government of Belgium spent millions of Euros to protect those same people, by cleaning the soil from the arsenic factory in Reppel, which was closed in 1971. Although scientific evidence was available that the soil and groundwater were heavily polluted with arsenic, zinc and other heavy metals, it took more than 30 years before the site was cleaned up, and apparently more work is still required.

Environmental damage, including pollution, soil erosion and biodiversity loss are hard to measure in simple economic terms. As Jeff mentioned in last week’s blog, environmental costs are often seen as “externalities” and not considered when calculating the cost:benefit of farms. This has given conventional farming an unfair advantage over organic or agroecological farming.

Although the narrow focus on a single active ingredient, such as glyphosate, may have been good to trigger a public debate around food safety and the danger of corporate interests in our food system, a more holistic approach to crop protection and food production is required that takes into account these externalities.

Managing weeds is a key challenge for farmers across the globe. While mulching, crop rotation, intercropping and green manures are all options, additional weeding may be required—often by appropriate, small machines. Alternatives to herbicides do exist. For commercial (conventional and organic) farmers affordable mechanical weeding technologies, based on precision technology, would make a huge difference.

For instance, the food processing industry has benefitted a lot from optic food sorting machines. In a fraction of a second, a stone the size of a pea can be removed from millions of peas. With a simple mobile app called PlantNet I can take a photo of any plant which immediately tells me what plant it is, even if I only have the leaves at hand and the plant is not yet flowering.

Despite what the industry wants to make us believe, farmers do not need herbicides. If countries are serious about public health, more research is needed to support non-chemical food production. Agricultural robots are getting better. In the near future it would be possible to engineer a wheeled robot that could systematically drive over a field, scanning for weeds, and eliminating them mechanically, even within crop rows.

If governments would invest more in alternatives to chemical agriculture and organise nation-wide campaigns (as they have done for decades to inform people of other health risks, such as smoking, and drinking and driving), farmers, gardeners and shopkeepers (like the lady near my village) would become more aware of the dangers of herbicides and more open to promoting and using alternatives.

As I walked out of the village garden shop without my organic chicken feed (she did not have it in stock for lack of demand), I realized that shopkeepers are happy to sell what people ask for, if enough people ask for it. I hope one day to go back and find them selling better tools for controlling weeds.

Further reading

Defarge, N., Spiroux de VendĂ´mois, J. and SĂ©ralini, G.E. 2018. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicology Reports 5, 156-163.

First International Conference on Agroecology Transforming Agriculture & Food Systems in Africa: Reducing Synthetic Pesticides and Fertilizers by Scaling up Agroecology and Promoting Ecological Organic Trade. 2019, Nairobi, Kenya. https://www.worldfoodpreservationcenterpesticidecongress.com/

HLPE. 2019. Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by The High Level Panel of Experts on Food Security and Nutrition. www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_Reports/HLPE-Report-14_EN.pdf

IPES-Food. 2016. From uniformity to diversity: a paradigm shift from industrial agriculture to diversified agroecological systems. International Panel of Experts on Sustainable Food systems. www.ipes-food.org

Related videos

Effective weed management in rice

Rotary weeder

Over 140 farmer training videos on organic agriculture can be found on the Access Agriculture video-sharing platform:  Organic agriculture

Related blogs

From uniformity to diversity

Stop erosion

What counts in agroecology

Design by Olean webdesign